Laplacian integrality in P4-sparse and P4-extendible graphs

Let G be a simple graph and L=L(G) the Laplacian matrix of G. G is called L-integral if all its Laplacian eigenvalues are integer numbers. It is known that every cograph, a graph free of P4, is L-integral. The class of P4-sparse graphs and the class of P4-extendible graphs contain the cographs. It seems natural to investigate if the graphs in these classes are still L-integral. In this paper we characterized the L-integral graphs for both cases, P4-sparse graphs and P4-extendible graphs.

[1]  R. Merris Laplacian graph eigenvectors , 1998 .

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  Dragoš Cvetković,et al.  Conjugated molecules having integral graph spectra , 1974 .

[4]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[5]  S. Kirkland,et al.  Split non-threshold Laplacian integral graphs , 2010 .

[6]  S. Olariu,et al.  P4‐Reducible Graphs—Class of Uniquely Tree‐Representable Graphs , 1989 .

[7]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[8]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[10]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[11]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[12]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[13]  Dragos Cvetkovic,et al.  Multiprocessor Interconnection Networks with Small tightness , 2009, Int. J. Found. Comput. Sci..

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  S. Olariu,et al.  A New Class of Brittle Graphs , 1989 .

[16]  Stephan Olariu,et al.  On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..

[17]  Stephan Olariu,et al.  A Linear-Time Recognition Algorithm for P4-Reducible Graphs , 1989, FSTTCS.

[18]  R. Merris Degree maximal graphs are Laplacian integral , 1994 .

[19]  S. Olariu,et al.  On a unique tree representation for P4-extendible graphs , 1991, Discret. Appl. Math..

[20]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..