Parametric and modulational instabilities of the discrete nonlinear Schrödinger equation

We examine the parametric and modulational instabilities arising in a non-autonomous, discrete nonlinear Schrodinger equation. The principal motivation for our study stems from the dynamics of Bose–Einstein condensates trapped in a deep optical lattice. We find that under periodic variations of the heights of the interwell barriers (or equivalently of the scattering length), in addition to the modulational instability, a window of parametric instability becomes available to the system. We explore this instability through multiple-scale analysis and identify it numerically. Its principal dynamical characteristic is that, typically, it develops over much larger times than the modulational instability, a feature that is qualitatively justified by comparison of the corresponding instability growth rates.

[1]  A R Bishop,et al.  Dynamical superfluid-insulator transition in a chain of weakly coupled bose-Einstein condensates. , 2002, Physical review letters.

[2]  H. Washimi,et al.  Self-Trapping and Instability of Hydromagnetic Waves Along the Magnetic Field in a Cold Plasma , 1968 .

[3]  D Ciampini,et al.  Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices. , 2001, Physical review letters.

[4]  A M Kamchatnov,et al.  Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length. , 2003, Physical review letters.

[5]  P. Kevrekidis,et al.  Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[7]  C. R. Willis,et al.  Biomolecular dynamics of DNA: statistical mechanics and dynamical models , 1993 .

[8]  Thierry Dauxois,et al.  Dynamics and thermodynamics of systems with long-range interactions , 2002 .

[9]  F. Lederer,et al.  Modulational instability in optical fibers with variable dispersion , 1996 .

[10]  B. Malomed,et al.  Feshbach resonance management for Bose-Einstein condensates. , 2003, Physical review letters.

[11]  Kim Ø. Rasmussen,et al.  THE DISCRETE NONLINEAR SCHRÖDINGER EQUATION: A SURVEY OF RECENT RESULTS , 2001 .

[12]  B. A. Malomed,et al.  Array of Bose-Einstein condensates under time-periodic Feshbach-resonance management , 2003 .

[13]  M. Kasevich,et al.  Macroscopic quantum interference from atomic tunnel arrays , 1998, Science.

[14]  S. Rolston,et al.  Nonlinear and quantum atom optics , 2002, Nature.

[15]  P. Maddaloni,et al.  Superfluid current disruption in a chain of weakly coupled Bose–Einstein condensates , 2003, cond-mat/0311410.

[16]  Peyrard,et al.  Modulational instabilities in discrete lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[18]  E. Arimondo,et al.  Ultracold Atoms and Bose-Einstein Condensates in Optical Lattices , 2002 .

[19]  Carl E. Wieman,et al.  Dynamics of collapsing and exploding Bose–Einstein condensates , 2001, Nature.

[20]  F Minardi,et al.  Josephson Junction Arrays with Bose-Einstein Condensates , 2001, Science.

[21]  R. Morandotti,et al.  Dynamics of discrete solitons in optical waveguide arrays , 1999 .

[22]  W. Magnus,et al.  Hill's equation , 1966 .

[23]  Kestutis Staliunas,et al.  Faraday patterns in bose-Einstein condensates. , 2002, Physical review letters.

[24]  V. Konotop,et al.  Nonlinear excitations in arrays of Bose-Einstein condensates , 2001, cond-mat/0106042.

[25]  Biao Wu,et al.  Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices , 2001 .

[26]  Diane M. Henderson,et al.  Progressive waves with persistent two-dimensional surface patterns in deep water , 2005, Journal of Fluid Mechanics.

[27]  M. Salerno,et al.  Modulational instability in Bose-Einstein condensates in optical lattices , 2002 .

[28]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[29]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[30]  D. Christodoulides,et al.  Discrete self-focusing in nonlinear arrays of coupled waveguides. , 1988, Optics letters.

[31]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[32]  B. A. Malomed,et al.  Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length , 2003 .

[33]  M. Kasevich,et al.  Squeezed States in a Bose-Einstein Condensate , 2001, Science.

[34]  A. Hasegawa OBSERVATION OF SELF-TRAPPING INSTABILITY OF A PLASMA CYCLOTRON WAVE IN A COMPUTER EXPERIMENT. , 1970 .