Maximum norm convergence of multigrid methods for elliptic boundary value problems

Multigrid methods applied to standard linear finite element discretizations of linear elliptic boundary value problems in two dimensions are considered. In the multigrid method, damped Jacobi or damped Gauss-Seidel is used as a smoother. It is proven that the two-grid method with v pre-smoothing iterations has a contraction number with respect to the maximum norm that is (asymptotically) bounded by Cv-1/2 l ln hkl2, with hk a suitable mesh size parameter. Moreover, it is shown that this bound is sharp in the sense that a factor I ln hk I is necessary.

[1]  On maximum norm convergence of multigrid methods for two-point boundary value problems , 1992 .

[2]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[3]  R. Rannacher,et al.  Zur L∞-Konvergenz linearer finiter Elemente beim Dirichlet-Problem , 1976 .

[4]  D. Braess The contraction number of a multigrid method for solving the Poisson equation , 1981 .

[5]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[6]  The smoothing property for regular splittings , 1993 .

[7]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[8]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[9]  Aa Arnold Reusken A new lemma in multigrid convergence theory , 1991 .

[10]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[11]  Jean Descloux,et al.  On Finite Element Matrices , 1972 .

[12]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[13]  J. Nitsche,et al.  L∞-convergence of finite element approximations , 1977 .

[14]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[15]  Seymour V. Parter,et al.  Remarks on multigrid convergence theorems , 1987 .

[16]  Gabriel Wittum,et al.  Linear iterations as smoothers in multigrid methods: Theory with applications to incomplete decompositions , 1989, IMPACT Comput. Sci. Eng..