An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings

Presents an efficient method for the design of complex fiber Bragg gratings. The method relies on the synthesis of the impulse response of the grating by means of a differential layer-peeling algorithm. The algorithm developed takes into account all the multiple reflections inside the grating, giving an exact solution to the inverse scattering problem. Its low algorithmic complexity enables the synthesis of long fiber gratings. The method is illustrated by designing several filters with interest for optical fiber communication systems: dispersionless bandpass filters and second- and third order dispersion compensators.

[1]  F. Ouellette Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. , 1987, Optics letters.

[2]  Kenneth P. Bube,et al.  The One-Dimensional Inverse Problem of Reflection Seismology , 1983 .

[3]  B. Bovard,et al.  Fourier transform technique applied to quarterwave optical coatings. , 1988, Applied optics.

[4]  Alfred M. Bruckstein,et al.  Differential methods in inverse scattering , 1985 .

[5]  P. R. Smith,et al.  An introduction to electromagnetic inverse scattering , 1992 .

[6]  D. Jaggard,et al.  The reconstruction of stratified dielectric profiles using successive approximations , 1987 .

[7]  Johannes Skaar,et al.  A genetic algorithm for the inverse problem in synthesis of fiber gratings , 1998 .

[8]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[9]  Alfred M. Bruckstein,et al.  Inverse scattering for discrete transmission—line models , 1987 .

[10]  Javier Martí,et al.  Iterative solution to the Gel'Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings , 1996 .

[11]  A. Tikhonravov,et al.  Some theoretical aspects of thin-film optics and their applications. , 1993, Applied optics.

[12]  K. Bube Convergence of difference methods for one-dimensional inverse problems , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[13]  G. Lamb Elements of soliton theory , 1980 .

[14]  A. E. Yagle,et al.  An asymmetric discrete-time approach for the design and analysis of periodic waveguide gratings , 1995 .

[15]  Michalis N. Zervas,et al.  Broadband dispersion-compensating chirped fibre Bragg gratings in a 10 Gbit/s NRZ 110km non-dispersion-shifted fibre link operating at 1.55µm , 1997 .

[16]  Raoul Stubbe,et al.  A writing technique for long fiber Bragg gratings with complex reflectivity profiles , 1997 .

[17]  Panayiotis Frangos,et al.  Pulse propagation in a nonlinear optical fibre of parabolic index profile by direct numerical solution of the Gel'fand-Levitan integral equations , 1993 .

[18]  Dwight L. Jaggard,et al.  A numerical solution to the Zakharov-Shabat inverse scattering problem , 1991 .

[19]  Sang-Yung Shin,et al.  Design of corrugated waveguide filters by the Gel’fand–Levitan–Marchenko inverse-scattering method , 1985 .

[20]  M. M. Sondhi,et al.  Inversion of the telegraph equation and the synthesis of nonuniform lines , 1971 .

[21]  Kim A. Winick,et al.  Design of corrugated waveguide filters by Fourier-transform techniques , 1990 .

[22]  Morten Ibsen,et al.  Optimised square passband fibre Bragg grating filter with in-band flat group delay response , 1998 .

[23]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[24]  G. Meltz,et al.  Formation of Bragg gratings in optical fibers by a transverse holographic method. , 1989, Optics letters.

[25]  J. Skaar,et al.  High-reflectivity fiber-optic bandpass filter designed by use of the iterative solution to the Gel'fand-Levitan-Marchenko equations. , 1998, Optics letters.

[26]  M. Nakazawa,et al.  Fabrication of non-linearly chirped fiber Bragg gratings for higher-order dispersion compensation , 1998 .

[27]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[28]  Kim A. Winick,et al.  Waveguide grating filters for dispersion compensation and pulse compression , 1993 .

[29]  Javier Martí,et al.  Design of fibre grating dispersion compensators using a novel iterative solution to the Gel'fand-Levitan-Marchenko coupled equations , 1996 .

[30]  John G. Proakis,et al.  Introduction to Digital Signal Processing , 1988 .

[31]  Dennis G. Hall,et al.  Analysis of waveguide gratings: application of Rouard's method , 1985 .

[32]  S Barcelos,et al.  Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. , 1995, Optics letters.

[33]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[34]  U. Leonhardt,et al.  Light propogation in one-dimensional lossless dielectrica: transfer matrix method and coupled mode theory , 1993 .

[35]  J A Dobrowolski,et al.  Optical thin film synthesis program based on the use of Fourier transforms. , 1978, Applied optics.

[36]  K. Ennser,et al.  Optimization of apodized linearly chirped fiber gratings for optical communications , 1998 .

[37]  I. Kay,et al.  The inverse scattering problem when the reflection coefficient is a rational function , 1960 .