High power fiber lasers: current status and future perspectives [Invited]

The rise in output power from rare-earth-doped fiber sources over the past decade, via the use of cladding-pumped fiber architectures, has been dramatic, leading to a range of fiber-based devices with outstanding performance in terms of output power, beam quality, overall efficiency, and flexibility with regard to operating wavelength and radiation format. This success in the high-power arena is largely due to the fiber’s geometry, which provides considerable resilience to the effects of heat generation in the core, and facilitates efficient conversion from relatively low-brightness diode pump radiation to high-brightness laser output. In this paper we review the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in terms of high-power performance. We then review the current status and challenges of extending the technology to other rare-earth dopants and associated wavelengths of operation. Throughout we identify the key factors currently limiting fiber laser performance in different operating regimes—in particular thermal management, optical nonlinearity, and damage. Finally, we speculate as to the likely developments in pump laser technology, fiber design and fabrication, architectural approaches, and functionality that lie ahead in the coming decade and the implications they have on fiber laser performance and industrial/scientific adoption.

[1]  M. Ibsen,et al.  High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm , 2006, IEEE Photonics Technology Letters.

[2]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[3]  C. Headley,et al.  Diffraction-Limited Fundamental Mode Operation of Core-Pumped Very-Large-Mode-Area Er Fiber Amplifiers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  David J. Richardson,et al.  Passive harmonic modelocking of a fibre soliton ring laser , 1993 .

[5]  Kazimierz Jędrzejewski,et al.  Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain , 1991 .

[6]  Yongwoo Park,et al.  Long-Period Fiber-Grating-Based Filter for Generation of Picosecond and Subpicosecond Transform-Limited Flat-Top Pulses , 2008, IEEE Photonics Technology Letters.

[7]  R. Fedosejevs,et al.  Passively $Q$ -switched Ytterbium-Doped Double-Clad Fiber Laser With a Cr$^{4+}$:YAG Saturable Absorber , 2007, IEEE Photonics Technology Letters.

[8]  B. Samson,et al.  Tm-Doped Fiber Lasers: Fundamentals and Power Scaling , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Jens Limpert,et al.  Compensation of pulse-distortion in saturated laser amplifiers. , 2008, Optics express.

[10]  Erik Zucker,et al.  110 W fibre laser , 1999 .

[11]  David N. Payne,et al.  Neodymium-doped silica single-mode fibre lasers , 1985 .

[12]  Slimane Loualiche,et al.  Erbium-doped fiber laser passively Q-switched by an InGaAs/InP multiple quantum well saturable absorber , 2006 .

[13]  A. Friesem,et al.  Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers , 1989 .

[14]  M. Pal,et al.  Picosecond fiber MOPA pumped supercontinuum source with 39 W output power , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[15]  David J. Richardson,et al.  Passively Q-switched 0.1mJ fiber laser system at 1.53µm , 1999 .

[16]  F Benabid,et al.  Large-pitch kagome-structured hollow-core photonic crystal fiber. , 2006, Optics letters.

[17]  J. Limpert,et al.  High Repetition Rate Gigawatt Peak Power Fiber Laser Systems: Challenges, Design, and Experiment , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  J. Limpert,et al.  100-W average-power, high-energy nanosecond fiber amplifier , 2002 .

[19]  Jens Limpert,et al.  High-power femtosecond Yb-doped fiber amplifier. , 2002, Optics express.

[20]  Joshua E. Rothenberg,et al.  Passive coherent phasing of fiber laser arrays , 2008, SPIE LASE.

[21]  David N. Payne,et al.  Fabrication and characterization of Yb/sup 3+/:Er/sup 3+/ phosphosilicate fibers for lasers , 1998 .

[22]  David N. Payne,et al.  111 kW (0.5 mJ) pulse amplification at 1.5 μm using a gated cascade of three erbium‐doped fiber amplifiers , 1993 .

[23]  Stuart D. Jackson,et al.  Erbium 3 /spl mu/m fiber lasers , 2001 .

[24]  Andrew S. Webb,et al.  Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening , 2010 .

[25]  Alfred Leitenstorfer,et al.  Synthesis of a single cycle of light with compact erbium-doped fibre technology , 2010 .

[26]  J P Huignard,et al.  High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. , 2007, Optics express.

[27]  D J Richardson,et al.  High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. , 1998, Optics letters.

[28]  J. Rothhardt,et al.  Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. , 2007, Optics letters.

[29]  K. Williams,et al.  158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier. , 1997, Optics letters.

[30]  J V Moloney,et al.  Single-transverse-mode output from a fiber laser based on multimode interference. , 2008, Optics letters.

[31]  David N. Payne,et al.  Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser , 2009 .

[32]  Cesar Jauregui,et al.  94 W 980 nm high brightness Yb-doped fiber laser. , 2008, Optics express.

[33]  Tso Yee Fan,et al.  Beam combining of ytterbium fiber amplifiers (Invited) , 2007 .

[34]  V. A. Akimov,et al.  3.77-5.05-μm tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures , 2006, IEEE Journal of Quantum Electronics.

[35]  N. Peyghambarian,et al.  Phase-locked multicore all-fiber lasers: modeling and experimental investigation , 2007 .

[36]  R. Beach,et al.  Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. , 2008, Optics express.

[37]  Johan Nilsson,et al.  Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers. , 2010, Applied optics.

[38]  Andrew Bratcher,et al.  Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. , 2010, Optics express.

[39]  S. Fevrier,et al.  Solid-Core Photonic Bandgap Fibers for High-Power Fiber Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  R. Horley,et al.  Erbium:Ytterbium Codoped Large-Core Fiber Laser With 297-W Continuous-Wave Output Power , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  Stuart D. Jackson,et al.  The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared , 2009 .

[42]  J K Sahu,et al.  Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power. , 2005, Optics express.

[43]  R. Schermer,et al.  Mode scalability in bent optical fibers. , 2007, Optics express.

[44]  Stuart D. Jackson,et al.  High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm , 2009 .

[45]  F Benabid,et al.  Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. , 2007, Physical review letters.

[46]  S. Jackson,et al.  Midinfrared holmium fiber lasers , 2006, IEEE Journal of Quantum Electronics.

[47]  K. Pasch,et al.  Coherent Array of Nonlinear Regenerative Fiber Amplifiers , 2008, IEEE Journal of Quantum Electronics.

[48]  Anatoly P. Napartovich,et al.  Introduction to the Issue on Laser Beam Combining and Fiber Laser Systems , 2009 .

[49]  J. Rothenberg,et al.  Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. , 2009, Optics letters.

[50]  Gilmore J. Dunning,et al.  Self-organized coherence in fiber laser arrays , 2004, SPIE LASE.

[51]  J. Price,et al.  Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. , 2001, Optics express.

[52]  Timothy J. Carrig,et al.  Transition-metal-doped chalcogenide lasers , 2002 .

[53]  J. A. Alvarez-Chavez,et al.  High-power and tunable operation of erbium-ytterbium Co-doped cladding-pumped fiber lasers , 2003 .

[54]  J. Limpert,et al.  100-W single-frequency master-oscillator fiber power amplifier. , 2003, Optics letters.

[55]  G. Millot,et al.  Self-similarity in ultrafast nonlinear optics , 2007 .

[56]  David N. Payne,et al.  Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power , 2004 .

[57]  Perry,et al.  Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. , 1996, Physical review. B, Condensed matter.

[58]  Nikolai Platonov,et al.  100 watt single-mode CW linearly polarized all-fiber format 1.56-μm laser with suppression of parasitic lasing effects , 2005, SPIE LASE.

[59]  Lu Chai,et al.  Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber. , 2010, Optics letters.

[60]  G. Veith,et al.  40 GHz pulse generation using a widely tunable all-polarisation preserving erbium fibre ring laser , 1993 .

[61]  C. D. de Matos,et al.  All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber. , 2003, Optics express.

[62]  Sylvain Girard,et al.  Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers , 2006 .

[63]  Fanting Kong,et al.  Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array , 2007 .

[64]  D. Hanna,et al.  Ytterbium-doped fiber amplifiers , 1997 .

[65]  M. Ibsen,et al.  High-power linearly-polarized single-frequency thulium-doped fiber Master-Oscillator Power-Amplifier. , 2010, Optics express.

[66]  C. Burrus,et al.  Neodymium‐doped silica lasers in end‐pumped fiber geometry , 1973 .

[67]  Shayne Bennetts,et al.  High-power 83 W holmium-doped silica fiber laser operating with high beam quality. , 2007, Optics letters.

[68]  E. Snitzer,et al.  Proposed Fiber Cavities for Optical Masers , 1961 .

[69]  M. Fermann,et al.  Single-mode excitation of multimode fibers with ultrashort pulses. , 1998, Optics letters.

[70]  Cyril C. Renaud,et al.  Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range , 2001 .

[71]  Christophe A. Codemard,et al.  100-W CW cladding-pumped Raman fiber laser at 1120 nm , 2010, LASE.

[72]  J. Rothhardt,et al.  Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber. , 2008, Optics express.

[73]  D. Richardson,et al.  Soliton pulse compression in dispersion-decreasing fiber. , 1993, Optics letters.

[74]  Peter Horak,et al.  Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm. , 2010, Optics letters.

[75]  K T Vu,et al.  Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. , 2006, Optics express.

[76]  P. Pérez-Millán,et al.  Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating. , 2006, Optics express.

[77]  J. Broeng,et al.  High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm. , 2009, Optics express.

[78]  J R Taylor,et al.  Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb--Er-seeded fiber source. , 2000, Optics letters.

[79]  Frank W. Wise,et al.  High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion , 2008 .

[80]  Angela B. Seddon,et al.  Fluorotellurite glasses with improved mid-infrared transmission , 2003 .

[81]  J. Farroni,et al.  High peak power ytterbium doped fiber amplifiers , 2006, SPIE LASE.

[82]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[83]  Almantas Galvanauskas,et al.  High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers. , 2005, Optics letters.

[84]  E. Dianov Bi-doped glass optical fibers: Is it a new breakthrough in laser materials? , 2009 .

[85]  Christopher D. Brooks,et al.  Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier , 2006 .

[86]  Shigeki Tokita,et al.  Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser. , 2009, Optics letters.

[87]  T. Y. Fan,et al.  Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG , 1988 .

[88]  E. M. Dianov,et al.  Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines , 1991 .

[89]  V. Mashinsky,et al.  Absorption, Gain, and Laser Action in Bismuth-Doped Aluminosilicate Optical Fibers , 2010, IEEE Journal of Quantum Electronics.

[90]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[91]  Yoann Zaouter,et al.  High power ytterbium-doped rod-type three-level photonic crystal fiber laser. , 2008, Optics express.

[92]  Christopher J. Corcoran,et al.  Experimental demonstration of a phase-locked laser array using a self-Fourier cavity , 2005 .

[93]  S B Mirov,et al.  10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser. , 2009, Optics express.

[94]  J R Leger,et al.  Coherent laser addition using binary phase gratings. , 1987, Applied optics.

[95]  Akira Shirakawa,et al.  Coherent addition of fiber lasers by use of a fiber coupler. , 2002, Optics express.

[96]  J. Rothhardt,et al.  Millijoule pulse energy Q-switched short-length fiber laser. , 2007, Optics letters.

[97]  B Jaskorzynska,et al.  Modeling and optimization of low-repetition-rate high-energy pulse amplification in cw-pumped erbium-doped fiber amplifiers. , 1993, Optics letters.

[98]  D. Shepherd,et al.  Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser. , 2002, Optics letters.

[99]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[100]  T. Fan Laser beam combining for high-power, high-radiance sources , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[101]  J. Limpert,et al.  Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber. , 2009, Optics letters.

[102]  J. Limpert,et al.  Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources. , 2009, Optics letters.

[103]  Periklis Petropoulos,et al.  Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating , 2001 .

[104]  Liang Dong,et al.  Extending Effective Area of Fundamental Mode in Optical Fibers , 2009, Journal of Lightwave Technology.

[105]  Michel Piché,et al.  Thermal effects in high-power CW fiber lasers , 2009, LASE.

[106]  Ken-ichi Ueda,et al.  Limits of Coherent Addition of Lasers: Simple Estimate , 2005, 2005 Pacific Rim Conference on Lasers & Electro-Optics.

[107]  J K Sahu,et al.  High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm. , 2003, Optics letters.

[108]  T. Horiguchi,et al.  Tensile strain dependence of Brillouin frequency shift in silica optical fibers , 1989, IEEE Photonics Technology Letters.

[109]  Stephen A. Payne,et al.  Large flattened-mode optical fiber for reduction of nonlinear effects in optical fiber lasers , 2004, SPIE LASE.

[110]  S. Ramachandran,et al.  Introduction to the Issue on High-Power Fiber Lasers , 2009 .

[111]  David C. Brown,et al.  Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .

[112]  P. Cheo,et al.  Self-organization in a multicore fiber laser array. , 2003, Optics letters.

[113]  Corin B E Gawith,et al.  High-power, variable repetition rate, picosecond optical parametric oscillator pumped by an amplified gain-switched diode. , 2010, Optics express.

[114]  Yonghang Shen,et al.  PPMgLN-Based High-Power Optical Parametric Oscillator Pumped by Yb $^{{\bm 3}{\bm +}}$-Doped Fiber Amplifier Incorporates Active Pulse Shaping , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[115]  Johan Nilsson,et al.  High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. , 2009, Optics express.

[116]  D. Richardson,et al.  Large Mode Area Fibers for High Power Applications , 1999 .

[117]  Joao M.M. Sousa,et al.  MULTIMODE ER-DOPED FIBER FOR SINGLE-TRANSVERSE-MODE AMPLIFICATION , 1999 .

[118]  Yan Feng,et al.  150 W highly-efficient Raman fiber laser. , 2009, Optics express.

[119]  V. Shkunov,et al.  Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering. , 2010, Optics Letters.

[120]  D. Payne,et al.  Fabrication of low-loss optical fibres containing rare-earth ions , 1985 .

[121]  Stuart D. Jackson,et al.  Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers , 2004 .

[122]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[123]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[124]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[125]  Shaif-ul Alam,et al.  56-W Frequency-Doubled Source at 530 nm Pumped by a Single-Mode, Single-Polarization, Picosecond, Yb $^{3+}$-Doped Fiber MOPA , 2010, IEEE Photonics Technology Letters.

[126]  A. Galvanauskas,et al.  Fiber-lasers for ultrafast optics , 1997 .

[127]  Mark E. Weber,et al.  Diffractive-optics-based beam combination of a phase-locked fiber laser array. , 2008, Optics letters.

[128]  Liang Dong,et al.  Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. , 2009, Optics express.

[129]  Chunte A. Lu,et al.  Self-Synchronous and Self-Referenced Coherent Beam Combination for Large Optical Arrays , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[130]  J. Limpert,et al.  High-power picosecond fiber amplifier based on nonlinear spectral compression. , 2005, Optics letters.

[131]  V. Smirnov,et al.  Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[132]  D. C. Hanna,et al.  Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 /spl mu/m , 2000 .

[133]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[134]  B. Do,et al.  Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm. , 2008, Applied optics.

[135]  W. Chujo,et al.  Simulating and designing Brillouin gain spectrum in single-mode fibers , 2004, Journal of Lightwave Technology.

[136]  J.W. Kim,et al.  Fiber-Laser-Pumped Er:YAG Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[137]  B. Hafizi,et al.  Incoherent Combining and Atmospheric Propagation of High-Power Fiber Lasers for Directed-Energy Applications , 2009, IEEE Journal of Quantum Electronics.

[138]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[139]  D. Hanna,et al.  Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 /spl mu/m region , 1995 .

[140]  M. Khajavikhan,et al.  Experimental Measurements of Supermodes in Superposition Architectures for Coherent Laser Beam Combining , 2010, IEEE Journal of Quantum Electronics.

[141]  Anne C. Tropper,et al.  An Ytterbium-doped Monomode Fibre Laser: Broadly Tunable Operation from 1·010 μm to 1·162 μm and Three-level Operation at 974 Nm , 1990 .

[142]  W. Barnes,et al.  Diode-array pumping of Er/sup 3+//Yb/sup 3+/ Co-doped fiber lasers and amplifiers , 1993, IEEE Photonics Technology Letters.

[143]  J P Huignard,et al.  Phase and amplitude control of a multimode LMA fiber beam by use of digital holography. , 2009, Optics express.

[144]  Jens Limpert,et al.  Microjoule-level all-polarization-maintaining femtosecond fiber source. , 2006, Optics letters.

[145]  Arlee V Smith,et al.  Peak-power limits on fiber amplifiers imposed by self-focusing. , 2006, Optics letters.

[147]  Almantas Galvanauskas,et al.  Array size scalability of passively coherently phased fiber laser arrays. , 2010, Optics express.

[148]  Y. Jeong,et al.  Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[149]  Jean-Luc Adam,et al.  Fluoride glass research in France: fundamentals and applications , 2001 .

[150]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[151]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[152]  M. Dubinskii,et al.  Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency. , 2009, Optics letters.

[153]  J K Sahu,et al.  High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum. , 2006, Optics express.

[154]  J. Nilsson,et al.  Ultra-short pulse Yb/sup 3+/ fiber based laser and amplifier system producing >25 W average power , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[155]  Martin Richardson,et al.  Lasers and Optics Diode-pumped 200 Μm Diameter Core, Gain-guided, Index-antiguided Single Mode Fiber Laser , 2008 .

[156]  A. B. Ruffin,et al.  Al/Ge co-doped large mode area fiber with high SBS threshold. , 2007, Optics express.

[157]  G. Bouwmans,et al.  Very high numerical aperture fibers , 2004, IEEE Photonics Technology Letters.

[158]  Shaif-ul Alam,et al.  High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers , 2004 .

[159]  Y. Jeong,et al.  Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. , 2004, Optics express.

[160]  Miguel V. Andrés,et al.  All-fiber actively Q-switched Yb-doped laser , 2006 .

[161]  John M. Fini,et al.  Ultra‐large effective‐area, higher‐order mode fibers: a new strategy for high‐power lasers , 2008 .

[162]  J. Limpert,et al.  Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation. , 2003, Optics express.

[163]  D. Hand,et al.  Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. , 1988, Optics letters.

[164]  Elias Snitzer,et al.  Amplification in a Fiber Laser , 1964 .

[165]  David J. Richardson,et al.  High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser , 2004 .

[166]  G. Agrawal,et al.  Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings. , 2003, Optics express.

[167]  J. Taylor,et al.  Power scalability to 6 W of 770 nm source based on seeded fibre amplifier and PPKTP , 2001 .

[168]  D N Payne,et al.  Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. , 2005, Optics letters.