From number theory to statistical mechanics: Bose-Einstein condensation in isolated traps

We question the validity of the grand canonical ensemble for the description of Bose-Einstein condensation of small ideal Bose gas samples in isolated harmonic traps. While the ground state fraction and the specific heat capacity can be well approximated with the help of the conventional grand canonical arguments, the calculation of the fluctuation of the number of particles contained in the condensate requires a microcanonical approach. Resorting to the theory of restricted partitions of integer numbers, we present analytical and numerical results for such fluctuations in one- and three-dimensional traps, and show that their magnitude is essentially independent of the total particle number.