On Cheeger‐type inequalities for weighted graphs
暂无分享,去创建一个
[1] Bojan Mohar,et al. Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.
[2] Alexander Lubotzky,et al. Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.
[3] Noga Alon,et al. Eigenvalues and expanders , 1986, Comb..
[4] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .
[5] S. Friedland,et al. On the second real eigenvalue of nonegative and Z-matrices , 1997 .
[6] B. Mohar. Some applications of Laplace eigenvalues of graphs , 1997 .
[7] Abraham Berman,et al. Lower bounds for the eigenvalues of Laplacian matrices , 2000 .
[8] Bojan Mohar,et al. Laplace eigenvalues of graphs - a survey , 1992, Discret. Math..
[9] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[10] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[11] R. Merris. Laplacian matrices of graphs: a survey , 1994 .
[12] Miroslav Fiedler,et al. An estimate for the nonstochastic eigenvalues of doubly stochastic matrices , 1995 .
[13] Y. Cho,et al. Discrete Groups , 1994 .
[14] Shmuel Friedland,et al. Lower bounds for the first eigenvalue of certain M-matrices associated with graphs , 1992 .
[15] B. Mohar. Isoperimetric inequalities, growth, and the spectrum of graphs , 1988 .