Unbiased metrics of friends’ influence in multi-level networks

The spreading of information is of crucial importance for the modern information society. While we still receive information from mass media and other non-personalized sources, online social networks and influence of friends have become important personalized sources of information. This calls for metrics to measure the influence of users on the behavior of their friends. We demonstrate that the currently existing metrics of friends’ influence are biased by the presence of highly popular items in the data, and as a result can lead to an illusion of friends influence where there is none. We correct for this bias and develop three metrics that allow to distinguish the influence of friends from the effects of item popularity, and apply the metrics on real datasets. We use a simple network model based on the influence of friends and preferential attachment to illustrate the performance of our metrics at different levels of friends’ influence.

[1]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[2]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[3]  Jon M. Kleinberg,et al.  Feedback effects between similarity and social influence in online communities , 2008, KDD.

[4]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[5]  Giulio Cimini,et al.  Temporal effects in the growth of networks , 2011, Physical review letters.

[6]  Ravi Kumar,et al.  Influence and correlation in social networks , 2008, KDD.

[7]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[8]  Lise Getoor,et al.  Co-evolution of social and affiliation networks , 2009, KDD.

[9]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[10]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[11]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[12]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[13]  Kristina Lerman,et al.  The Simple Rules of Social Contagion , 2013, Scientific Reports.

[14]  Cosma Rohilla Shalizi,et al.  Homophily and Contagion Are Generically Confounded in Observational Social Network Studies , 2010, Sociological methods & research.

[15]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[16]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[17]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Jacob Goldenberg,et al.  Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth , 2001 .

[19]  M. E. J. Newman,et al.  The first-mover advantage in scientific publication , 2008, 0809.0522.

[20]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[21]  Kristina Lerman,et al.  What Stops Social Epidemics? , 2011, ICWSM.

[22]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[23]  F. Bass A new product growth model for consumer durables , 1976 .

[24]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Lada A. Adamic,et al.  Social influence and the diffusion of user-created content , 2009, EC '09.

[26]  Frank M. Bass,et al.  A New Product Growth for Model Consumer Durables , 2004, Manag. Sci..

[27]  Bernhard Schölkopf,et al.  Structure and dynamics of information pathways in online media , 2012, WSDM.

[28]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[29]  Tad Hogg,et al.  Social dynamics of Digg , 2010, EPJ Data Science.

[30]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[31]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[32]  Filippo Radicchi,et al.  Percolation in real interdependent networks , 2015, Nature Physics.

[33]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[35]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[36]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[37]  András A. Benczúr,et al.  Temporal influence over the Last.fm social network , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[38]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[39]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[40]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[41]  M. Sarvary,et al.  Network Effects and Personal Influences: The Diffusion of an Online Social Network , 2011 .

[42]  Matús Medo,et al.  Statistical validation of high-dimensional models of growing networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[44]  András A. Benczúr,et al.  Temporal influence over the Last.fm social network , 2013, ASONAM.