Optimal estimation and rank detection for sparse spiked covariance matrices
暂无分享,去创建一个
[1] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[2] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[3] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[4] Thomas Kailath,et al. Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..
[5] L. L. Cam,et al. Asymptotic methods in statistical theory , 1986 .
[6] P. Massart,et al. HUNGARIAN CONSTRUCTIONS FROM THE NONASYMPTOTIC VIEWPOINT , 1989 .
[7] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[8] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[9] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[10] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[11] D. Reich,et al. Population Structure and Eigenanalysis , 2006, PLoS genetics.
[12] D. Reich,et al. Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.
[13] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[14] Jianqing Fan,et al. High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.
[15] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[16] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[17] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[18] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[19] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[20] B. Nadler,et al. Determining the number of components in a factor model from limited noisy data , 2008 .
[21] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[22] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[23] J. Marron,et al. PCA CONSISTENCY IN HIGH DIMENSION, LOW SAMPLE SIZE CONTEXT , 2009, 0911.3827.
[24] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[25] Boaz Nadler,et al. Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory , 2009, IEEE Transactions on Signal Processing.
[26] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[27] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[28] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[29] L. Mattner,et al. Stochastic ordering of classical discrete distributions , 2009, Advances in Applied Probability.
[30] V. Koltchinskii,et al. Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.
[31] A. Tsybakov,et al. Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.
[32] Ming Yuan,et al. High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..
[33] Martin J. Wainwright,et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.
[34] S. Geer,et al. Oracle Inequalities and Optimal Inference under Group Sparsity , 2010, 1007.1771.
[35] Weidong Liu,et al. Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.
[36] Igor Vajda,et al. On Pairs of $f$ -Divergences and Their Joint Range , 2010, IEEE Transactions on Information Theory.
[37] F. Bunea,et al. On the sample covariance matrix estimator of reduced effective rank population matrices, with applications to fPCA , 2012, 1212.5321.
[38] M. Yuan,et al. Adaptive covariance matrix estimation through block thresholding , 2012, 1211.0459.
[39] Alexei Onatski,et al. Signal detection in high dimension: The multispiked case , 2012, 1210.5663.
[40] Harrison H. Zhou,et al. OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.
[41] Jing Lei,et al. Minimax Rates of Estimation for Sparse PCA in High Dimensions , 2012, AISTATS.
[42] Harrison H. Zhou,et al. Estimating Sparse Precision Matrix: Optimal Rates of Convergence and Adaptive Estimation , 2012, 1212.2882.
[43] Karim Lounici. High-dimensional covariance matrix estimation with missing observations , 2012, 1201.2577.
[44] P. Rigollet,et al. Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.
[45] Alexei Onatski,et al. Asymptotics of the principal components estimator of large factor models with weakly influential factors , 2012 .
[46] T. Cai,et al. Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.
[47] Vincent Q. Vu,et al. MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN HIGH DIMENSIONS , 2012, 1211.0373.
[48] Zongming Ma. Sparse Principal Component Analysis and Iterative Thresholding , 2011, 1112.2432.
[49] Philippe Rigollet,et al. Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.
[50] Harrison H. Zhou,et al. Optimal rates of convergence for estimating Toeplitz covariance matrices , 2013 .
[51] B. Nadler,et al. MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA. , 2012, Annals of statistics.
[52] Karim Lounici. Sparse Principal Component Analysis with Missing Observations , 2012, 1205.7060.