Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains

This work deals with the numerical simulation of wave propagation on unbounded domains with localized heterogeneities. To do so, we propose to combine a discretization based on a discontinuous Galerkin method in space and explicit finite differences in time on the regions containing heterogeneities with the retarded potential method to account the unbounded nature of the computational domain. The coupling formula enforces a discrete energy identity ensuring the stability under the usual CFL condition in the interior. Moreover, the scheme allows to use a smaller time step in the interior domain yielding to quasi-optimal discretization parameters for both methods. The aliasing phenomena introduced by the local time stepping are reduced by a post-processing by averaging in time obtaining a stable and second order consistent (in time) coupling algorithm. We compute the numerical rate of convergence of the method for an academic problem. The numerical results show the feasibility of the whole discretization procedure.

[1]  T. Ha-Duong,et al.  A Galerkin BEM for transient acoustic scattering by an absorbing obstacle , 2003 .

[2]  Jian-Ming Jin,et al.  A fast time-domain finite element-boundary integral method for electromagnetic analysis , 2001 .

[3]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[4]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[5]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[6]  E. Michielssen,et al.  Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .

[7]  J. Craggs Applied Mathematical Sciences , 1973 .

[8]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[9]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[10]  P. Joly,et al.  Space-time mesh refinement for elastodynamics. Numerical results , 2005 .

[11]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[12]  P. GROB,et al.  Conservative Coupling between Finite Elements and Retarded Potentials. Application to Vibroacoustics , 2007, SIAM J. Sci. Comput..

[13]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[14]  Ergin,et al.  Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm , 2000, The Journal of the Acoustical Society of America.

[15]  Patrick Joly,et al.  Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems , 2010, J. Comput. Appl. Math..

[16]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.

[17]  Jeronimo Rodriguez Garcia A Spurious-Free Space-Time Mesh Refinement for Elastodynamics , 2008 .

[18]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.

[19]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[20]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[21]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[22]  Guillaume Sylvand Équation des Ondes en Acoustique : Accélération des Potentiels Retardés par la Méthode Multipôle Temporelle , 2003 .

[23]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[24]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .

[25]  R. HIPTMAIR,et al.  Stabilized FEM-BEM Coupling for Helmholtz Transmission Problems , 2006, SIAM J. Numer. Anal..

[26]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[27]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[28]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..