Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability

The hippocampus plays a central role in the brain network that is essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic‐ischemic episodes. Here, we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings suggest that a developmental decrease in astrocytic processes could underlie the selective vulnerability of CA1 during hypoxic‐ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adultlike memory function. © 2009 Wiley‐Liss, Inc.

[1]  D. Amaral,et al.  Historical Perspective: Proposed Functions, Biological Characteristics, and Neurobiological Models of the Hippocampus , 2009 .

[2]  R. Sapolsky,et al.  Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury , 2004, Journal of Experimental Biology.

[3]  J. Rothstein,et al.  Antisense Knockdown of the Glial Glutamate Transporter GLT-1, But Not the Neuronal Glutamate Transporter EAAC1, Exacerbates Transient Focal Cerebral Ischemia-Induced Neuronal Damage in Rat Brain , 2001, The Journal of Neuroscience.

[4]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[5]  M. Richard Theories of Hippocampal Function , 2006 .

[6]  S. Sensi,et al.  Blockade of Ca2+-Permeable AMPA/Kainate Channels Decreases Oxygen–Glucose Deprivation-Induced Zn2+Accumulation and Neuronal Loss in Hippocampal Pyramidal Neurons , 2002, The Journal of Neuroscience.

[7]  K. Harris,et al.  Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes , 1999, The Journal of Neuroscience.

[8]  U. Dirnagl,et al.  Role of glial cells in cerebral ischemia , 2005, Glia.

[9]  W. Spielmeyer,et al.  Zur Pathogenese örtlich elektiver Gehirnveränderungen , 2005, Deutsche Zeitschrift für Nervenheilkunde.

[10]  N. Dale,et al.  A Depletable Pool of Adenosine in Area CA1 of the Rat Hippocampus , 2001, The Journal of Neuroscience.

[11]  Kevin A. Burns,et al.  Hypoxia-Ischemia Induces DNA Synthesis without Cell Proliferation in Dying Neurons in Adult Rodent Brain , 2004, The Journal of Neuroscience.

[12]  C. Biddle The neurobiology of the human febrile response. , 2006, AANA journal.

[13]  A. Reichenbach,et al.  Astrocytes and Ependymal Glia , 2004 .

[14]  E. Lein,et al.  Defining a Molecular Atlas of the Hippocampus Using DNA Microarrays and High-Throughput In Situ Hybridization , 2004, The Journal of Neuroscience.

[15]  R. Vannucci,et al.  Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. , 1997, Brain research. Developmental brain research.

[16]  R. Swanson Astrocyte Neurotransmitter Uptake , 2004 .

[17]  S. Oliet,et al.  Control of Glutamate Clearance and Synaptic Efficacy by Glial Coverage of Neurons , 2001, Science.

[18]  S. Vannucci,et al.  Hypoxia–ischemia in the immature brain , 2004, Journal of Experimental Biology.

[19]  W. Holmes,et al.  LTP in hippocampal area CA1 is induced by burst stimulation over a broad frequency range centered around delta. , 2009, Learning & memory.

[20]  J. Gregg,et al.  Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. , 2006, Human molecular genetics.

[21]  I. Holopainen Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity , 2005, Neurochemical Research.

[22]  W. Spielmeyer,et al.  Zur pathogenese örtlich elektiver grehirnveränderungen , 1925 .

[23]  F. Jensen The role of glutamate receptor maturation in perinatal seizures and brain injury , 2002, International Journal of Developmental Neuroscience.

[24]  Masahiko Watanabe,et al.  Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. , 1997, Science.

[25]  U. Heinemann,et al.  Developmental changes in the number, size, and orientation of GFAP‐positive cells in the CA1 region of rat hippocampus , 1994, Glia.

[26]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[27]  T. Kosaka,et al.  Structural and quantitative analysis of astrocytes in the mouse hippocampus , 2002, Neuroscience.

[28]  Pierre Lavenex,et al.  Postmortem changes in the neuroanatomical characteristics of the primate brain: Hippocampal formation , 2009, The Journal of comparative neurology.

[29]  E. Kandel,et al.  Cognitive Neuroscience and the Study of Memory , 1998, Neuron.

[30]  David G. Amaral,et al.  Hippocampal Lesion Prevents Spatial Relational Learning in Adult Macaque Monkeys , 2006, The Journal of Neuroscience.

[31]  C. Jahr,et al.  Glial Contribution to Glutamate Uptake at Schaffer Collateral–Commissural Synapses in the Hippocampus , 1998, The Journal of Neuroscience.

[32]  Christian J. Stork,et al.  Intracellular Zinc Elevation Measured with a “Calcium-Specific” Indicator during Ischemia and Reperfusion in Rat Hippocampus: A Question on Calcium Overload , 2006, The Journal of Neuroscience.

[33]  W. Hauser The Prevalence and Incidence of Convulsive Disorders in Children , 1994, Epilepsia.

[34]  L. Squire,et al.  Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Paul Antoine Salin,et al.  Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors , 1997, Nature.

[36]  P. Lipton,et al.  Calcium and long‐term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. , 1986, The Journal of physiology.

[37]  S. Ginsberg,et al.  Expression profile analysis within the human hippocampus: Comparison of CA1 and CA3 pyramidal neurons , 2005, The Journal of comparative neurology.

[38]  L. Raymond,et al.  Functional NMDA Receptor Subtype 2B Is Expressed in Astrocytes after Ischemia In Vivo and Anoxia In Vitro , 2003, The Journal of Neuroscience.

[39]  F. Galeffi,et al.  Changes in Intracellular Chloride after Oxygen–Glucose Deprivation of the Adult Hippocampal Slice: Effect of Diazepam , 2004, The Journal of Neuroscience.

[40]  P. Lipton,et al.  Protection of hippocampal slices from young rats against anoxic transmission damage is due to better maintenance of ATP. , 1989, The Journal of physiology.

[41]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[42]  T. Takano,et al.  An astrocytic basis of epilepsy , 2005, Nature Medicine.

[43]  Mattias P. Karlsson,et al.  Network Dynamics Underlying the Formation of Sparse, Informative Representations in the Hippocampus , 2008, The Journal of Neuroscience.

[44]  Maiken Nedergaard,et al.  Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. , 2005, Journal of neurophysiology.

[45]  P. Magistretti,et al.  Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Wilhelm Sommer,et al.  Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie , 1880, Archiv für Psychiatrie und Nervenkrankheiten.

[47]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.