Geometric Filtering for Subspace Tracking
暂无分享,去创建一个
[1] Michael Isard,et al. Active Contours , 2000, Springer London.
[2] U. Grenander,et al. nal-Mean Estimation Via Jump-Diffusion ses in Multiple Target Tracking/Recognition , 1995 .
[3] Donald W. Tufts,et al. Two algorithms for fast approximate subspace tracking , 1999, IEEE Trans. Signal Process..
[4] Jun S. Liu,et al. Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..
[5] Y. Hua,et al. Fast orthonormal PAST algorithm , 2000, IEEE Signal Processing Letters.
[6] Karim Abed-Meraim,et al. A New Look at the Power Method for Fast Subspace Tracking , 1999, Digit. Signal Process..
[7] L. Tong,et al. Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.
[8] Y. Bar-Shalom. Tracking and data association , 1988 .
[9] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[10] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[11] Richard S. Bucy,et al. Geometry and multiple direction estimation , 1991, Inf. Sci..
[12] Benoît Champagne,et al. On the efficient use of Givens rotations in SVD-based subspace tracking algorithms , 1999, Signal Process..
[13] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[14] Anuj Srivastava,et al. Subspace tracking via rigid body dynamics , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.
[15] Jean Pierre Delmas,et al. Performance analysis of an adaptive algorithm for tracking dominant subspaces , 1998, IEEE Trans. Signal Process..
[16] D. Fuhrmann. An algorithm for subspace computation, with applications in signal processing , 1988 .
[17] S. T. Smith. Intrinsic Cramer-Rao bounds and subspace estimation accuracy , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).
[18] Anuj Srivastava,et al. A Bayesian approach to geometric subspace estimation , 2000, IEEE Trans. Signal Process..
[19] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[20] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[21] Joos Vandewalle,et al. An improved stochastic gradient algorithm for principal component analysis and subspace tracking , 1997, IEEE Trans. Signal Process..