Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages

Abstract It is widely accepted that lunar volcanism started before the emplacement of the mare fills ( ≈ 3.1 – 3.9 Ga b.p.) and lasted for probably more than 3.0 Ga. While the early volcanic activity is relatively easy to understand from a thermal point of view, the late stages of volcanism are harder to explain, because a relatively small body like the Earth's Moon is expected to cool rapidly and any molten layer in the interior should solidify rather quickly. We present several thermal evolution models, in which we varied the boundary conditions at the model surface in order to evaluate the influence on the extent and lifetime of a molten layer in the lunar interior. To investigate the influence of a top insulating layer we used a fully three-dimensional spherical shell convection code for the modelling of the lunar thermal history. In all our models, a partial melt zone formed nearly immediately after the simulation started (early in lunar history), consistent with the identification of lunar cryptomare and early mare basalt volcanism on the Moon. Due to the characteristic thickening of the Moon's lithosphere the melt zone solidified from above. This suggests that the source regions of volcanic rock material proceeded to increasing depth with time. The rapid growth of a massive lithosphere kept the Moon's interior warm and prevented the melt zone from fast freezing. The lifetimes of the melt zones derived from our models are consistent with basalt ages obtained from crater chronology. We conclude that an insulating megaregolith layer is sufficient to prevent the interior from fast cooling, allowing for the thermal regime necessary for the production and eruption of young lava flows in Oceanus Procellarum.

[1]  E. Takahashi Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite , 1990 .

[2]  Ralf Jaumann,et al.  Ages of Mare Basalts on the Lunar Nearside: A Synthesis , 2000 .

[3]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[4]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[5]  Stefano Mottola,et al.  European Planetary Science Congress 2006 , 2008 .

[6]  Alfred S. McEwen,et al.  Lunar impact basins: New data for the western limb and far side (Orientale and South Pole‐Aitken Basins) from the first Galileo flyby , 1993 .

[7]  L. Hood,et al.  Limits on the lunar temperature profile , 1982 .

[8]  G. Schubert,et al.  Subsolidus convective cooling histories of terrestrial planets , 1979 .

[9]  Stephen J. Mackwell,et al.  37th Annual Lunar and Planetary Science Conference , 2003 .

[10]  T. Spohn,et al.  The Longevity of Lunar Volcanism: Implications of Thermal Evolution Calculations with 2D and 3D Mantle Convection Models , 2001 .

[11]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[12]  H. Haack,et al.  Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids , 1990 .

[13]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[14]  James W. Head,et al.  Lunar volcanism in space and time. , 1976 .

[15]  A. Coradini,et al.  Earth and Mars: early thermal profiles , 1983 .

[16]  G. Schubert,et al.  Whole planet cooling and the radiogenic heat source contents of the Earth and Moon , 1980 .

[17]  P. Schultheiss,et al.  Heat and fluid flux through sediment on the western flank of the Mid‐Atlantic Ridge: A hydrogeological study of North Pond , 1992 .

[18]  L. Taylor,et al.  Pre-4.2 AE mare-basalt volcanism in the lunar highlands , 1983 .

[19]  Matthew E. Pritchard,et al.  The Constitution and Structure of the Lunar Interior , 2006 .

[20]  T. Spohn Mantle differentiation and thermal evolution of Mars, Mercury, and Venus , 1991 .

[21]  P. Spudis,et al.  Beginning and end of lunar mare volcanism , 1983, Nature.

[22]  Paul H. Warren,et al.  Megaregolith thickness, heat flow, and the bulk composition of the Moon , 1985, Nature.

[23]  Hood,et al.  Improved gravity field of the moon from lunar prospector , 1998, Science.

[24]  D. Breuer,et al.  Influence of a variable thermal conductivity on the thermochemical evolution of Mars , 2006 .

[25]  R. Jaumann,et al.  Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum , 2003 .

[26]  J. Vaisnys,et al.  Contact thermal conductivity in lunar aggregates. , 1973 .

[27]  J. Makino,et al.  Evolution of a Circumterrestrial Disk and Formation of a Single Moon , 1999 .

[28]  H. Wänke,et al.  Early differentiation of the Moon: Evidence from trace elements in plagioclase , 1984 .

[29]  David A. Yuen,et al.  Various influences on plumes and dynamics in time-dependent, compressible mantle convection in 3-D spherical shell , 1996 .

[30]  J. Kasting,et al.  Evolution of a steam atmosphere during Earth's accretion. , 1988, Icarus.

[31]  M. Robinson,et al.  Constraints on the depth and variability of the lunar regolith , 2003 .

[32]  M. Wieczorek,et al.  Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models , 2007 .

[33]  Roger J. Phillips,et al.  The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution , 2000 .

[34]  Stephen J. Keihm,et al.  Lunar Thermal Regime to 500 KM , 1977 .

[35]  R. Canup,et al.  Accretion of the Moon from an Impact-Generated Disk , 1995 .

[36]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[37]  W. Hartmann,et al.  Origin of the Moon , 1986 .

[38]  S. Taylor Planetary science: A lunar perspective , 1982 .

[39]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[40]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[41]  L. Taylor,et al.  Petrologic constraints on the origin of the Moon , 1984 .

[42]  Ulrich R. Christensen,et al.  Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle , 1993 .

[43]  Doris Breuer,et al.  Three dimensional models of Martian mantle convection with phase transitions , 1998 .

[44]  J. L. Chute,et al.  Apollo 15 measurement of lunar surface brightness temperatures thermal conductivity of the upper 1 1/2 meters of regolith , 1973 .

[45]  D. Tozer The present thermal state of the terrestrial planets , 1972 .

[46]  Philip R. Christensen,et al.  Thermal conductivity measurements of particulate materials 1. A review , 1997 .

[47]  R. Phillips,et al.  Lunar Multiring Basins and the Cratering Process , 1999 .

[48]  J. Head,et al.  Definition and detailed characterization of lunar surface units using remote observations , 1976 .

[49]  F. D. Stacey Physics of the earth , 1977 .

[50]  M. Ashby,et al.  Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[51]  A. Hagermann,et al.  Derivation of globally averaged lunar heat flow from the local heat flow values and the Thorium distribution at the surface: expected improvement by the LUNAR-A Mission , 2001 .

[52]  B. Jolliff,et al.  New views of the Moon , 2006 .

[53]  David J. Stevenson,et al.  Origin of the Moon-The Collision Hypothesis , 1987 .

[54]  J. Whitehead Fluid models of geological hotspots , 1988 .

[55]  H. Haack,et al.  Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon , 1990 .

[56]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[57]  P. E. van Keken,et al.  Cooling of the earth in the Archaean: Consequences of pressure-release melting in a hotter mantle , 1994 .

[58]  Tilman Spohn,et al.  Line heat-source measurements of the thermal conductivity of porous H2O ice, CO2 ice and mineral powders under space conditions , 1996 .

[59]  H. Harder Mantle convection and the dynamic geoid of Mars , 2000 .

[60]  Lunar,et al.  Concepts and Approaches for Mars Exploration , 2000 .

[61]  P. C. Hess Diapirism and the origin of high TiO2 mare glasses , 1991 .

[62]  M. Nafi Toksöz,et al.  Structure of the Moon , 1974 .

[63]  J. Head,et al.  Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts , 1992 .

[64]  S. Keihm,et al.  The Revised Lunar Heat Flow Values , 1976 .

[65]  T. Spohn,et al.  Thermal history of the Moon: Implications for an early core dynamo and post-accertional magmatism , 1997 .

[66]  G. Ryder Lunar ferroan anorthosites and mare basalt sources: The mixed connection , 1991 .

[67]  A. Konopliv,et al.  Recent Gravity Models as a Result of the Lunar Prospector Mission , 2001 .

[68]  L. Cathles,et al.  The Viscosity of the Earth's Mantle , 1975 .

[69]  K. Rasmussen,et al.  Megaregolith insulation, internal temperatures, and bulk uranium content of the moon , 1987 .

[70]  M. G. Langseth,et al.  Surface brightness temperatures at the Apollo 17 heat flow site - Thermal conductivity of the upper 15 cm of regolith , 1973 .