A survey of control strategies for simultaneous vibration suppression and energy harvesting via piezoceramics

This article presents a summary of passive, semipassive, semiactive, and active control methods for schemes using harvested energy as the main source of energy to suppress vibrations via piezoelectric materials. This concept grew out of the fact that energy dissipation effects resulting from energy harvesting can cause structural damping. First, the existing equivalent electromechanical modeling methods are reviewed for vibration-based energy harvesters using piezoelectric transducers. Modeling of base excitation cantilever beam ranges from lumped to distributed parameter formulations. The commonly used electrical power conditioning circuits and their optimization are also summarized and discussed. The energy dissipation from harvesting induces structural damping, and this leads to the concept of purely passive shunt damping. This article reviews the literature on vibration control laws along the lines of purely passive, semipassive, semiactive, and active control. The classification of pervious results is built on whether external power is supplied to the piezoelectric transducers. The focus is placed on recent articles investigating semipassive and semiactive control strategies derived from synchronized switching damping. However, whether or not the harvested energy is large enough to satisfy a vibration suppression requirement has become an important topic of research but has not yet specifically been addressed in previous studies. Hence, this survey also reviews the possible control methods aiming for less control energy consumption and addresses the potential application for simultaneous vibration control and energy harvesting.

[1]  Rajesh Rajamani,et al.  Methods for multimodal vibration suppression and energy harvesting using piezoelectric actuators , 2009 .

[2]  Adrien Badel,et al.  Nonlinear Semi-active Damping using Constant or Adaptive Voltage Sources: A Stability Analysis , 2008 .

[3]  Jean-François Deü,et al.  Structural Vibration Reduction by Switch Shunting of Piezoelectric Elements: Modeling and Optimization , 2010 .

[4]  William W. Clark,et al.  Comparison of low-frequency piezoceramic shunt techniques for structural damping , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  J. Qiu,et al.  Energy harvesting and vibration control using piezoelectric elements and a nonlinear approach , 2009, 2009 18th IEEE International Symposium on the Applications of Ferroelectrics.

[6]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[7]  W. Clark Vibration Control with State-Switched Piezoelectric Materials , 2000 .

[8]  S. Mohammadi,et al.  Damping Behavior of Semi-passive Vibration Control using Shunted Piezoelectric Materials , 2008 .

[9]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[10]  Wen-Jong Wu,et al.  Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers , 2009 .

[11]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[12]  Haiqing Wei,et al.  Fundamental Limits of , 2010 .

[13]  William W. Clark,et al.  A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator , 2003 .

[14]  J. Hollkamp Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts , 1994 .

[15]  D. Inman,et al.  Frequency Self-tuning Scheme for Broadband Vibration Energy Harvesting , 2010 .

[16]  Adrien Badel,et al.  Semi-active Vibration Control of a Composite Beam using an Adaptive SSDV Approach , 2009 .

[17]  Andrew J. Fleming,et al.  Adaptive piezoelectric shunt damping , 2003 .

[18]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[19]  Adrien Badel,et al.  A comparison between several vibration-powered piezoelectric generators for standalone systems , 2006 .

[20]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[21]  Seth R. Sanders,et al.  Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers , 1998 .

[22]  Takaaki Ishii,et al.  Mechanical Damper Using Piezoelectric Ceramics , 1988 .

[23]  Jian-Qiao Sun,et al.  Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey , 1995 .

[24]  Wei-Hsin Liao,et al.  Piezoelectric Energy Harvesting and Dissipation on Structural Damping , 2009 .

[25]  S. O. Reza Moheimani,et al.  A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers , 2003, IEEE Trans. Control. Syst. Technol..

[26]  Mickaël Lallart,et al.  Piezoelectric conversion and energy harvesting enhancement by initial energy injection , 2010 .

[27]  H. Katz,et al.  Solid state magnetic and dielectric devices , 1959 .

[28]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[29]  Daniel J. Inman,et al.  Vibration with Control: Inman/Vibration with Control , 2006 .

[30]  Ichiro Jikuya,et al.  Adaptive piezoelectric shunt damping by self-tuning negative capacitor , 2014 .

[31]  Heath Hofmann,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2003 .

[32]  Jinhao Qiu,et al.  Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy , 2010 .

[33]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[34]  Daniel J. Inman,et al.  Transient Performance of Energy Harvesting Strategies under Constant Force Magnitude Excitation , 2010 .

[35]  David J. Wagg,et al.  Nonlinear Vibration with Control , 2010 .

[36]  Jinhao Qiu,et al.  Comparison between four piezoelectric energy harvesting circuits , 2009 .

[37]  Alex Elvin,et al.  A Coupled Finite Element—Circuit Simulation Model for Analyzing Piezoelectric Energy Generators , 2009 .

[38]  J.M. Conrad,et al.  A survey of energy harvesting sources for embedded systems , 2008, IEEE SoutheastCon 2008.

[39]  Jinhao Qiu,et al.  Semi-active vibration control using piezoelectric actuators in smart structures , 2009 .

[40]  D. Guyomar,et al.  Toward energy harvesting using active materials and conversion improvement by nonlinear processing , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  Yuansheng Chen,et al.  Multi-modal vibration control using a synchronized switch based on a displacement switching threshold , 2009 .

[42]  D. Guyomar,et al.  Stiffness Tuning Using a Low-Cost Semiactive Nonlinear Technique , 2008, IEEE/ASME Transactions on Mechatronics.

[43]  Daniel J. Inman,et al.  An electromechanical finite element model for piezoelectric energy harvester plates , 2009 .

[44]  Claude Richard,et al.  Self-powered circuit for broadband, multimodal piezoelectric vibration control , 2008 .

[45]  Daniel Guyomar,et al.  Semi-passive damping using continuous switching of a piezoelectric device , 1999, Smart Structures.

[46]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[47]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[48]  D. Guyomar,et al.  Buck-Boost Converter for Sensorless Power Optimization of Piezoelectric Energy Harvester , 2007, IEEE Transactions on Power Electronics.

[49]  D. Inman,et al.  Comparison of Control Laws for Vibration Suppression Based on Energy Consumption , 2011 .

[50]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[51]  Claude Richard,et al.  A broadband semi passive piezoelectric technique for structural damping , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[52]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[53]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[54]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[55]  K. W. Wang,et al.  An Integrated Active-Parametric Control Approach for Active-Passive Hybrid Piezoelectric Network with Variable Resistance , 1998 .

[56]  Adrien Badel,et al.  Semi-passive Piezoelectric Structural Damping by Synchronized Switching on Voltage Sources , 2006 .

[57]  Adrien Badel,et al.  Semi-active Vibration Control of a Composite Beam by Adaptive Synchronized Switching on Voltage Sources Based on LMS Algorithm , 2009 .

[58]  F.dell'Isola,et al.  Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation , 2010 .

[59]  Kenneth A. Cunefare,et al.  State-Switched Absorber for Vibration Control of Point-Excited Beams , 2000, Adaptive Structures and Material Systems.

[60]  Claude Richard,et al.  Vibration Control Based on a Probabilistic Nonlinear Processing of the Piezoelement Output Voltage , 2005 .

[61]  Hoon Cheol Park,et al.  Vibration suppression of a flexible robot manipulator with a lightweight piezo-composite actuator , 2009 .

[62]  J. Qiu,et al.  Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping , 2006 .

[63]  Adrien Badel,et al.  Finite Element and Simple Lumped Modeling for Flexural Nonlinear Semi-passive Damping , 2007 .

[64]  Y. Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[65]  Shirley J. Dyke,et al.  Performance of smart structures , 2000, Smart Structures.

[66]  Shirley J. Dyke,et al.  Experimental verification of multiinput seismic control strategies for smart dampers , 2001 .

[67]  Gregg D. Larson,et al.  The analysis and realization of a state switched acoustic transducer , 1996 .

[68]  Claude Richard,et al.  New Semi-active Multi-modal Vibration Control Using Piezoceramic Components , 2009 .

[69]  J. Farmer,et al.  A comparison of power harvesting techniques and related energy storage issues , 2007 .

[70]  George A. Lesieutre,et al.  AN ACTIVELY TUNED SOLID-STATE VIBRATION ABSORBER USING CAPACITIVE SHUNTING OF PIEZOELECTRIC STIFFNESS , 2000 .

[71]  William W. Clark,et al.  Semi-active vibration control with piezoelectric materials as variable-stiffness actuators , 1999, Smart Structures.

[72]  Kurt Maute,et al.  Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells , 2009 .

[73]  Luc Gaudiller,et al.  Blind switch damping (BSD): A self-adaptive semi-active damping technique , 2009 .

[74]  Joseph J. Hollkamp,et al.  A self-tuning piezoelectric vibration absorber , 1994 .

[75]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[76]  Daniel J. Inman,et al.  Effects of System Parameters and Damping on an Optimal Vibration-Based Energy Harvester , 2007 .

[77]  Wen-Jong Wu,et al.  An improved analysis of the SSHI interface in piezoelectric energy harvesting , 2007 .

[78]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[79]  Mickaël Lallart,et al.  Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[80]  Daniel Guyomar,et al.  Semi-passive random vibration control based on statistics , 2007 .

[81]  C. D. Johnson,et al.  Design of Passive Damping Systems , 1995 .

[82]  Stephen J. Elliott,et al.  Active power minimization and power absorption in a plate with force and moment excitation , 1997 .

[83]  Claude Richard,et al.  Single crystals and nonlinear process for outstanding vibration-powered electrical generators , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[84]  M. Pereyma,et al.  Overview of the Modern State of the Vibration Energy Harvesting Devices , 2007, 2007 International Conference on Perspective Technologies and Methods in MEMS Design.

[85]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[86]  William W. Clark,et al.  Energy Dissipation Analysis of Piezoceramic Semi-Active Vibration Control , 2001 .

[87]  George A. Lesieutre,et al.  Vibration damping and control using shunted piezoelectric materials , 1998 .

[88]  Daniel J. Inman,et al.  Multifunctional Unmanned Aerial Vehicle Wing Spar for Low-Power Generation and Storage , 2012 .

[89]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[90]  Claude Richard,et al.  Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor , 2000, Smart Structures.

[91]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[92]  Kenneth A. Cunefare,et al.  Damping Effects on the State-Switched Absorber Used for Vibration Suppression , 2003 .

[93]  Daniel J. Inman,et al.  Simultaneous Energy Harvesting and Gust Alleviation for a Multifunctional Wing Spar Using Reduced Energy Control Laws via Piezoceramics , 2011 .

[94]  D. K. Anthony,et al.  Comparison of the effectiveness of minimizing cost function parameters for active control of vibrational energy transmission in a lightly damped structure , 2000 .

[95]  Yaowen Yang,et al.  Equivalent Circuit Modeling of Piezoelectric Energy Harvesters , 2009 .

[96]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[97]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .