Visual processing of informative multipoint correlations arises primarily in V2

Using the visual system as a model, we recently showed that the efficient coding principle accounted for the allocation of computational resources in central sensory processing: when sampling an image is the main limitation, resources are devoted to compute the statistical features that are the most variable, and therefore the most informative (eLife 2014;3:e03722. DOI: 10.7554/eLife.03722 Hermundstad et al., 2014). Building on these results, we use single-unit recordings in the macaque monkey to determine where these computations—sensitivity to specific multipoint correlations—occur. We find that these computations take place in visual area V2, primarily in its supragranular layers. The demonstration that V2 neurons are sensitive to the multipoint correlations that are informative about natural images provides a common computational underpinning for diverse but well-recognized aspects of neural processing in V2, including its sensitivity to corners, junctions, illusory contours, figure/ground, and ‘naturalness.’ DOI: http://dx.doi.org/10.7554/eLife.06604.001

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  Edgar N. Gilbert Random Colorings of a Lattice of Squares in the Plane , 1980, SIAM J. Matrix Anal. Appl..

[3]  Michael S. Lewicki,et al.  A Simple Model of Optimal Population Coding for Sensory Systems , 2014, PLoS Comput. Biol..

[4]  Joris Vangeneugden,et al.  Orientation-Tuned Surround Suppression in Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[5]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[6]  Gasper Tkacik,et al.  Local statistics in natural scenes predict the saliency of synthetic textures , 2010, Proceedings of the National Academy of Sciences.

[7]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[8]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[9]  David J. Field,et al.  What is the other 85% of V1 doing? , 2004 .

[10]  Daniel J. Thengone,et al.  Sensitivity to local image statistics is (almost) scale-invariant , 2014 .

[11]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[12]  Mary M. Conte,et al.  Local image statistics: maximum-entropy constructions and perceptual salience. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  J. Victor,et al.  Responses to Orientation Discontinuities in V1 and V2: Physiological Dissociations and Functional Implications , 2014, The Journal of Neuroscience.

[14]  Mary M. Conte,et al.  Spatial organization of nonlinear interactions in form perception , 1991, Vision Research.

[15]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[16]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[17]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[18]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[19]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[20]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[21]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[23]  Mary M. Conte,et al.  Variance predicts salience in central sensory processing , 2014, eLife.

[24]  Eero P. Simoncelli,et al.  A functional and perceptual signature of the second visual area in primates , 2013, Nature Neuroscience.

[25]  T. Sejnowski,et al.  23 problems in systems neuroscience , 2006 .

[26]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[27]  Lynn Hazan,et al.  Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization , 2006, Journal of Neuroscience Methods.

[28]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[29]  Catherine Loader,et al.  Smoothing: Local Regression Techniques , 2012 .

[30]  Yuichi Mori,et al.  Handbook of Computational Statistics , 2004 .

[31]  J. Victor,et al.  Cortical interactions in texture processing: Scale and dynamics , 1989, Visual Neuroscience.

[32]  Jonathan D. Victor,et al.  Possible functions of contextual modulations and receptive field nonlinearities: Pop-out and texture segmentation , 2014, Vision Research.

[33]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[34]  Jeroen Joukes,et al.  Motion detection based on recurrent network dynamics , 2014, Frontiers in Systems Neuroscience.

[35]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.