Cross product kernels for fuzzy set similarity

We present a new kernel on fuzzy sets: the Cross Product kernel on fuzzy sets. This kernel implements a similarity measure between fuzzy sets with a geometrical interpretation in Reproducing Kernel Hilbert Spaces. We prove that this kernel is a convolution kernel that generalizes the widely know kernel on sets towards the space of fuzzy sets. Moreover, we show that the Cross Product kernel on fuzzy sets performs an embedding of probability measures into a Reproduction Kernel Hilbert space. Finally, we validated the kernel performance through experiments on supervised classification on noisy datasets.

[1]  Stéphane Canu,et al.  Positive definite kernel functions on fuzzy sets , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[2]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  George A. Papakostas,et al.  Handbook of Fuzzy Sets Comparison - Theory, Algorithms and Applications , 2016 .

[4]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[5]  R. Viertl Statistical Methods for Fuzzy Data , 2011 .

[6]  Stéphane Canu,et al.  Kernel functions in Takagi-Sugeno-Kang fuzzy system with nonsingleton fuzzy input , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[7]  Reinhard Viertl,et al.  Statistical Methods for Fuzzy Data: Viertl/Statistical Methods for Fuzzy Data , 2011 .

[8]  Thomas Gärtner,et al.  Kernels for structured data , 2008, Series in Machine Perception and Artificial Intelligence.

[9]  S. Canu,et al.  Fuzzy Set Similarity using a Distance-Based Kernel on Fuzzy Sets , 2015 .

[10]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[11]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[12]  Xindong Wu,et al.  Error Detection and Impact-Sensitive Instance Ranking in Noisy Datasets , 2004, AAAI.

[13]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[14]  Cheng Soon Ong,et al.  Learning SVM in Kreĭn Spaces , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  René L. Schilling Measures, Integrals and Martingales: Martingales , 2005 .

[16]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..