Formation of a single polar flagellum by two distinct flagellar gene sets in Sphingomonas sp. strain A1.

Gram-negative Sphingomonas sp. strain A1, originally identified as a non-motile and aflagellate bacterium, possesses two sets of genes required for flagellar formation. In this study, we characterized the flagellar genes and flagellum formation in strain A1. Flagellar gene cluster set I contained 35 flagellar genes, including one flagellin gene (p6), where the gene assembly structure resembled that required for the formation of lateral flagella in gammaproteobacteria. The set II flagellar genes were arranged in eight shorter clusters with 46 flagellar genes, including two flagellin genes (p5 and p5') and flhF, which is required for polar flagella. Our molecular phylogenetic analysis of the bacterial flagellins also demonstrated that, in contrast to p5 and p5', p6 was categorized as a lateral flagellin group. The motile phenotype appeared in strain A1 cells when they were subcultured on semisolid media. The motile strain A1 cells produced a single flagellum at the cell pole. DNA microarray analyses using non-motile and motile strain A1 cells indicated that flagellar formation was accompanied by increased transcription of both flagellar gene sets. The two flagellins p5 and p6 were major components of the flagellar filaments isolated from motile strain A1 cells, indicating that the polar flagellum is formed by lateral and non-lateral flagellins.

[1]  K. Murata,et al.  Alginate-Dependent Gene Expression Mechanism in Sphingomonas sp. Strain A1 , 2014, Journal of bacteriology.

[2]  D. Hendrixson,et al.  Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria , 2013, Molecular microbiology.

[3]  A. Lodeiro,et al.  Swarming motility in Bradyrhizobium japonicum. , 2013, Research in microbiology.

[4]  V. González,et al.  Aeromonas hydrophila Lateral Flagellar Gene Transcriptional Hierarchy , 2013, Journal of bacteriology.

[5]  Jay X. Tang,et al.  Flagellin Redundancy in Caulobacter crescentus and Its Implications for Flagellar Filament Assembly , 2011, Journal of bacteriology.

[6]  R. Sockett,et al.  Roles of Multiple Flagellins in Flagellar Formation and Flagellar Growth Post Bdelloplast Lysis in Bdellovibrio bacteriovorus , 2009, Journal of molecular biology.

[7]  F. Lauro,et al.  The Deep-Sea Bacterium Photobacterium profundum SS9 Utilizes Separate Flagellar Systems for Swimming and Swarming under High-Pressure Conditions , 2008, Applied and Environmental Microbiology.

[8]  Pablo Vinuesa,et al.  A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides , 2007, Journal of bacteriology.

[9]  M. Göttfert,et al.  Characterization of Two Sets of Subpolar Flagella in Bradyrhizobium japonicum , 2006, Journal of bacteriology.

[10]  J. Shaw,et al.  Bacterial lateral flagella: an inducible flagella system. , 2006, FEMS microbiology letters.

[11]  Rocío Canals,et al.  Polar Flagellum Biogenesis in Aeromonas hydrophila , 2006, Journal of bacteriology.

[12]  B. Mikami,et al.  Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. , 2005, Biochemistry.

[13]  T. Ogi,et al.  Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. , 2005, Microbiology.

[14]  Mark J. Pallen,et al.  The Flag-2 Locus, an Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar System from Escherichia coli , 2005, Journal of bacteriology.

[15]  L. McCarter Dual Flagellar Systems Enable Motility under Different Circumstances , 2004, Journal of Molecular Microbiology and Biotechnology.

[16]  Stephen Lory,et al.  A four‐tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[17]  L. McCarter,et al.  Lateral Flagellar Gene System of Vibrio parahaemolyticus , 2003, Journal of bacteriology.

[18]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[19]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[20]  E. Zenteno,et al.  Flagella and Motility in Actinobacillus pleuropneumoniae , 2003, Journal of bacteriology.

[21]  Colin Hughes,et al.  Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. , 2002, Journal of molecular biology.

[22]  K. Kobayashi,et al.  Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. , 2001, International journal of systematic and evolutionary microbiology.

[23]  K. Hughes,et al.  Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli , 2000, Microbiology and Molecular Biology Reviews.

[24]  L. McCarter,et al.  Analysis of the Polar Flagellar Gene System ofVibrio parahaemolyticus , 2000, Journal of bacteriology.

[25]  E. Morett,et al.  Compilation and analysis of σ54-dependent promoter sequences , 1999 .

[26]  K. Kutsukake,et al.  Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. , 1999, Genes & genetic systems.

[27]  J P Armitage,et al.  Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides , 1997, Journal of bacteriology.

[28]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[29]  J. Vanderleyden,et al.  Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7 , 1995, Journal of bacteriology.

[30]  F. Miake,et al.  Characterization of Pseudomonas paucimobilis FP2001 Which Forms Flagella Depending upon the Presence of Rhamnose in Liquid Medium , 1995, Microbiology and immunology.

[31]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[32]  D. DeRosier,et al.  The organization of the Caulobacter crescentus flagellar filament. , 1989, Journal of molecular biology.

[33]  T. Shimada,et al.  Peritrichous flagella in mesophilic strains of Aeromonas. , 1985, Japanese journal of medical science & biology.

[34]  E. Leifson,et al.  Atlas of Bacterial Flagellation , 1959 .

[35]  E. Ross The Organization of Will , 1916, American Journal of Sociology.

[36]  H. Terashima,et al.  Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. , 2006, Journal of biochemistry.

[37]  Thomas L. Madden,et al.  Applications of network BLAST server. , 1996, Methods in enzymology.

[38]  R. Macnab,et al.  Flagella and motility , 1996 .

[39]  K. Murata,et al.  Direct uptake of alginate molecules through a pit on the bacterial cell surface: A novel mechanism for the uptake of macromolecules , 1995 .

[40]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[41]  K. Murata,et al.  Bacterial Alginate Lyase : Characterization of Alginate Lyase-Producing Bacteria and Purification of the Enzyme , 1991 .