Long-lived monolithic micro-optics for multispectral GRIN applications

The potential for realizing robust, monolithic, near-surface refractive micro-optic elements with long-lived stability is demonstrated in visible and infrared transmitting glasses capable of use in dual band applications. Employing an enhanced understanding of glass chemistry and geometric control of mobile ion migration made possible with electrode patterning, flat, permanent, thermally-poled micro-optic structures have been produced and characterized. Sub-surface (t~5–10 µm) compositional and structural modification during the poling process results in formation of spatially-varying refractive index profiles, exhibiting induced Δn changes up to 5 × 10−2 which remain stable for >15 months. The universality of this approach applied to monolithic vis-near infrared [NIR] oxide and NIR-midwave infrared [MIR] chalcogenide glass materials is demonstrated for the first time. Element size, shape and gradient profile variation possible through pattern design and fabrication is shown to enable a variety of design options not possible using other GRIN process methodologies.

[1]  A. Boccaccini,et al.  Bioactivity of electro-thermally poled bioactive silicate glass. , 2009, Acta biomaterialia.

[2]  Thierry Cardinal,et al.  Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties , 2012 .

[3]  Reinhard Voelkel,et al.  Wafer-scale micro-optics fabrication , 2012 .

[4]  D T Moore,et al.  Gradient infrared optical material prepared by a chemical vapor deposition process. , 1986, Applied optics.

[5]  K. M. Knowles,et al.  Anodic bonding , 2006 .

[6]  A. Hiltner,et al.  Tunable polymer lens. , 2008, Optics express.

[7]  A. Lipovskii,et al.  Polarization of glass containing fast and slow ions , 2012 .

[8]  Zhe Chen,et al.  A poled fiber device with dual functions as an electro-optic modulator and a polarizer , 2005, SPIE/COS Photonics Asia.

[9]  R. A. Myers,et al.  Large second-order nonlinearity in poled fused silica. , 1991, Optics letters.

[10]  Thomas G. Alley,et al.  Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica , 1999 .

[11]  Kathleen Richardson,et al.  Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling , 2015 .

[12]  P. Brunkov,et al.  Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites , 2008 .

[13]  Markus Rossi,et al.  Wafer-scale micro-optics replication technology , 2003, SPIE Optics + Photonics.

[14]  P. Hanrahan,et al.  Light Field Photography with a Hand-held Plenoptic Camera , 2005 .

[15]  Hiroshi Nakagome,et al.  Optical waveguide formed by electrically induced migration of ions in glass plates , 1972 .

[16]  W. Margulis,et al.  Fabrication of waveguides in glasses by a poling procedure , 1997 .

[17]  Antony Orth,et al.  Gigapixel multispectral microscopy , 2015 .

[18]  David R. Smith,et al.  Quantitative comparison of gradient index and refractive lenses. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  M. Dussauze,et al.  Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses , 2009 .

[20]  A. Lipovskii,et al.  Spatially periodical poling of silica glass , 2012 .

[21]  Hans Zappe,et al.  Fundamentals of Micro-Optics , 2010 .

[22]  Daniel Gibson,et al.  IR-GRIN optics for imaging , 2016, SPIE Defense + Security.

[23]  A. Lipovskii,et al.  Nanoprofiling of alkali-silicate glasses by thermal poling , 2015 .

[24]  Guy Beadie,et al.  Achromatic GRIN singlet lens design. , 2013, Optics express.

[25]  J. David Musgraves,et al.  Engineering novel infrared glass ceramics for advanced optical solutions , 2016, SPIE Defense + Security.

[26]  Evelyne Fargin,et al.  Structural Rearrangements and Second-Order Optical Response in the Space Charge Layer of Thermally Poled Sodium−Niobium Borophosphate Glasses , 2007 .

[27]  Daniel Gibson,et al.  Layered chalcogenide glass structures for IR lenses , 2014, Defense + Security Symposium.

[28]  E. Wolterink,et al.  WaferOptics® mass volume production and reliability , 2010, Photonics Europe.

[29]  James S. Shirk,et al.  New class of bioinspired lenses with a gradient refractive index , 2007 .

[30]  A. Lipovskii,et al.  Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass , 2013 .

[31]  J. D. Musgraves,et al.  Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses , 2013 .

[32]  Kathleen Richardson,et al.  Micro-structuring the surface reactivity of a borosilicate glass via thermal poling , 2016 .

[33]  Marc Levoy,et al.  Light field microscopy , 2006, ACM Trans. Graph..

[34]  D T Moore,et al.  Design of a gradient-index photographic objective. , 1982, Applied optics.

[35]  Benn Gleason,et al.  Designing Optical Properties in Infrared Glass , 2015 .

[36]  O Manzardo,et al.  Miniaturized time-scanning Fourier Transform Spectrometer based on silicon technology , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[37]  Jaquet-Droz,et al.  Wafer-scale micro-optics fabrication , 2012 .

[38]  M. Kuittinen,et al.  Electric field imprinting of sub-micron patterns in glass–metal nanocomposites , 2008, Nanotechnology.

[39]  V. Araújo,et al.  Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass , 2008 .

[40]  G. Wallis,et al.  Field Assisted Glass‐Metal Sealing , 1969 .

[41]  Paul A Lane,et al.  Optical properties of a bio-inspired gradient refractive index polymer lens. , 2008, Optics express.

[42]  D T Moore,et al.  Real-time index profile measurement during GRIN glass fabrication. , 1988, Applied optics.

[43]  Marc Douay,et al.  Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses , 2000 .

[44]  Antoine Lepicard,et al.  Design of surface chemical reactivity and optical properties in glasses , 2016 .

[45]  Andrey A. Lipovskii,et al.  Imprinting phase/amplitude patterns in glasses with thermal poling , 2010 .

[46]  Thierry Cardinal,et al.  Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials , 2016 .