Deflated Restarting for Matrix Functions

We investigate an acceleration technique for restarted Krylov subspace methods for computing the action of a function of a large sparse matrix on a vector. Its effect is to ultimately deflate a specific invariant subspace of the matrix which most impedes the convergence of the restarted approximation process. An approximation to the subspace to be deflated is successively refined in the course of the underlying restarted Arnoldi process by extracting Ritz vectors and using those closest to the spectral region of interest as exact shifts. The approximation is constructed with the help of a generalization of Krylov decompositions to linearly dependent vectors. A description of the restarted process as a successive interpolation scheme at Ritz values is given in which the exact shifts are replaced with improved approximations of eigenvalues in each restart cycle. Numerical experiments demonstrate the efficacy of the approach.

[1]  H. Tal-Ezer High Degree Polynomial Interpolation in Newton Form , 1991, SIAM J. Sci. Comput..

[2]  Y. Lu Computing a matrix function for exponential integrators , 2003 .

[3]  Eter,et al.  Faber and Newton Polynomial Integrators for Open-System Density Matrix Propagation , 1998 .

[4]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[5]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[6]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[7]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[8]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .

[9]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[10]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[11]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[12]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..

[13]  Bruno Lang,et al.  An iterative method to compute the sign function of a non-Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential , 2007, Comput. Phys. Commun..

[14]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[15]  John Rossi,et al.  Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..

[16]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[17]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[18]  Ya Yan Lu,et al.  Computing a Matrix Function for Exponential Integrators , 2003 .

[19]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[20]  Stefan Güttel,et al.  Rational Krylov Methods for Operator Functions , 2010 .

[21]  VALERIA SIMONCINI,et al.  MATRIX FUNCTIONS , 2006 .

[22]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[23]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[24]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[25]  Ronald B. Morgan,et al.  GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..

[26]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  L. Knizhnerman Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .

[29]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[30]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[31]  G. W. Stewart An Arnoldi--Schur Algorithm for Large Eigenproblems , 2000 .

[32]  L. Bergamaschi,et al.  Interpolating discrete advection-diffusion propagators at Leja sequences , 2004 .

[33]  Stefan Güttel,et al.  A generalization of the steepest descent method for matrix functions , 2008 .

[34]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[35]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[36]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[37]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[38]  Jörg Niehoff,et al.  Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren , 2007 .

[39]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[40]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[41]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[42]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .