The ellipsoidal invariant set of fractional order systems subject to actuator saturation: the convex combination form

The domain of attraction of a class of fractional order systems subject to saturating actuators is investigated in this paper. We show the domain of attraction is the convex hull of a set of ellipsoids. In this paper, the Lyapunov direct approach and fractional order inequality are applied to estimating the domain of attraction for fractional order systems subject to actuator saturation. We demonstrate that the convex hull of ellipsoids can be made invariant for saturating actuators if each ellipsoid with a bounded control of the saturating actuators is invariant. The estimation on the contractively invariant ellipsoid and construction of the continuous feedback law are derived in terms of linear matrix inequalities (LMIs). Two numerical examples illustrate the effectiveness of the developed method.

[1]  Li Chunlin,et al.  Observer-based robust stabilisation of a class of non-linear fractional-order uncertain systems: an linear matrix inequalitie approach , 2012 .

[2]  Tingshu Hu,et al.  Composite quadratic Lyapunov functions for constrained control systems , 2003, IEEE Trans. Autom. Control..

[3]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[4]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[5]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[6]  Yang Ge,et al.  Observer-based stabilisation of a class of fractional order non-linear systems for 0 α <;2 case , 2014 .

[7]  S. Ma,et al.  Robust stability for discrete-time uncertain singular markov jump systems with actuator saturation , 2011 .

[8]  Yisheng Zhong,et al.  Robust stability for fractional-order systems with structured and unstructured uncertainties , 2011, Comput. Math. Appl..

[9]  Young-Hun Lim,et al.  Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation , 2013, IEEE Transactions on Automatic Control.

[10]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[11]  Wang Li,et al.  Robust stability analysis for a class of fractional order systems with uncertain parameters , 2011, J. Frankl. Inst..

[12]  Jimin Yu,et al.  Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems , 2013, Autom..

[13]  Li Chuang,et al.  On the ellipsoidal invariant set of fractional order systems subject to actuator saturation , 2015, 2015 34th Chinese Control Conference (CCC).

[14]  A. Jalali,et al.  Stabilization of all-pole unstable delay systems by fractional-order [PI] and [PD] controllers , 2013 .

[15]  Lixian Zhang,et al.  Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities , 2009, Autom..

[16]  D. Baleanu,et al.  Fractional Electromagnetic Equations Using Fractional Forms , 2009 .

[17]  Chuang Li,et al.  Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 , 2012, J. Frankl. Inst..

[18]  Hyo-Sung Ahn,et al.  Fractional‐order iterative learning control for fractional‐order linear systems , 2011 .

[19]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[20]  Yangquan Chen,et al.  Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems , 2012, Autom..

[21]  Weidong Chen,et al.  Maximal perturbation bounds for robust stabilizability of fractional-order systems with norm bounded perturbations , 2013, J. Frankl. Inst..

[22]  Tingshu Hu,et al.  An analysis and design method for linear systems subject to actuator saturation and disturbance , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[23]  Y. Chen,et al.  Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties , 2012 .

[24]  Kevin L. Moore,et al.  On D"-type Iterative Learning Control , 2001 .

[25]  Y. Chen,et al.  Fractional order iterative learning control , 2009, 2009 ICCAS-SICE.

[26]  R. Magin,et al.  Fractional calculus in viscoelasticity: An experimental study , 2010 .