Growth in SL_3(Z/pZ)

Let G=SL_3(Z/pZ), p a prime. Let A be a set of generators of G. Then A grows under the group operation. To be precise: denote by |S| the number of elements of a finite set S. Assume |A| 0. Then |A\cdot A\cdot A|>|A|^{1+\delta}, where \delta>0 depends only on \epsilon. We also study subsets A\subset G that do not generate G. Other results on growth and generation follow.

[1]  M. Garaev,et al.  An Explicit Sum-Product Estimate in p , 2010 .

[2]  J. Bourgain,et al.  Uniform expansion bounds for Cayley graphs of SL2(Fp) , 2008 .

[3]  Nikolay Nikolov,et al.  Product decompositions of quasirandom groups and a Jordan type theorem , 2007, math/0703343.

[4]  Jean Bourgain,et al.  Sum–product theorems and exponential sum bounds in residue classes for general modulus , 2007 .

[5]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[6]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[7]  Jean Bourgain,et al.  Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .

[8]  Howard H. Mitchell,et al.  Determination of the ordinary and modular ternary linear groups , 1911 .

[9]  B. Green,et al.  Freiman's theorem in an arbitrary abelian group , 2005, math/0505198.

[10]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[11]  R. Carter THE SUBGROUP STRUCTURE OF THE FINITE CLASSICAL GROUPS (London Mathematical Society Lecture Note Series 129) , 1991 .

[12]  E. Bombieri,et al.  Heights in Diophantine Geometry , 2006 .

[14]  György Elekes,et al.  On the number of sums and products , 1997 .

[15]  László Babai,et al.  On the diameter of Eulerian orientations of graphs , 2006, SODA '06.

[16]  S. Konyagin,et al.  Additive properties of product sets in fields of prime order , 2007 .

[17]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[18]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[19]  S. V. Konyagin A sum-product estimate in fields of prime order , 2003 .

[20]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[21]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[22]  Oren Dinai Poly-log diameter bounds for some families of finite groups , 2006 .

[23]  Armand Borel Linear Algebraic Groups , 1991 .

[24]  Jean Bourgain,et al.  Mordell's exponential sum estimate revisited , 2005 .

[25]  Melvyn B. Nathanson,et al.  On sums and products of integers , 1997 .

[26]  László Babai,et al.  Product growth and mixing in finite groups , 2008, SODA '08.

[27]  On uniform exponential growth for linear groups , 2001, math/0108157.

[28]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[29]  Terence Tao Product set estimates for non-commutative groups , 2008, Comb..

[30]  Peter Sarnak,et al.  Bounds for multiplicities of automorphic representations , 1991 .

[31]  D. E. Taylor The geometry of the classical groups , 1992 .

[32]  Oliver H. King,et al.  The subgroup structure of finite classical groups in terms of geometric configurations , 2005, BCC.

[33]  Jean Bourgain,et al.  On the spectral gap for finitely-generated subgroups of SU(2) , 2007 .

[34]  Endre Szemerédi,et al.  On sums and products of integers , 1983 .

[35]  Terence Tao,et al.  The sum-product phenomenon in arbitrary rings , 2008, Contributions Discret. Math..

[36]  M. Z. Garaev An explicit sum-product estimate in $\mathbb{F}_p$ , 2007 .

[37]  József Solymosi,et al.  On the Number of Sums and Products , 2005 .