연역적 유전자 알고리즘을 이용한 연관 단어 지식베이스의 최적화
暂无分享,去创建一个
지식 기반 정보검색 시스템에서의 질의 확장은 단어간의 의미 관계를 고려한 지식베이스를 필요로 한다. 기존의 단순 마이닝 기법은 사용자의 선호도를 고려하지 않은 채 연관 단어를 추출하므로 재현율은 향상되나 정확도는 저하된다. 본 논문에서는 단어간의 의미 관계를 고려한 연관 단어 중에서 사용자가 선호하는 연관 단어만을 포함하는 정확도가 향상된 최적화된 연관 단어 지식베이스 구축을 위한 방법을 제안한다. 이를 위해 컴퓨터 분야의 웹문서를 8개의 클래스로 분류하고, 각 클래스별 웹문서에서 명사를 추출한다. 추출된 명사를 대상으로 Apriori 알고리즘을 이용하여 연관 단어를 추출하고, 유전자 알고리즘을 이용하여 사용자가 선호하지 않는 연관 단어를 지식베이스의 구축 대상에서 제외시킨다. 본 논문에서 제안된 Apriori 알고리즘과 유전자 알고리즘의 성능을 평가하기 위하여 Apriori 알고리즘은 상호정보량과 Rocchio 알고리즘과 비교하며, 유전자 알고리즘은 TF?IDF를 이용한 단어 정제 방법과 비교한다.