Further results on finite-length scaling for iteratively decoded LDPC ensembles

The behavior of iteratively decoded low-density parity-check (LDPC) codes over the binary erasure channel in the so-called "waterfall region" is investigated and shows that the performance curves in this region follow a very basic scaling law. This scaling law, combined with previously known expressions for the error floor, yields a promising direction for analyzing the performance of irregular LDPC codes of practical lengths.

[1]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  Béla Bollobás,et al.  Random Graphs , 1985 .

[4]  V. Privman Finite-Size Scaling Theory , 1990 .

[5]  Gérard D. Cohen,et al.  The threshold probability of a code , 1995, IEEE Trans. Inf. Theory.

[6]  R. Blahut,et al.  Bit Error Rate Estimate of Finite Length Turbo Codes , 2003 .

[7]  R. Urbanke,et al.  Weight Distribution of Iterative Coding Systems: How Deviant can You be? , 2001 .

[8]  Gilles Zémor,et al.  Discrete Isoperimetric Inequalities and the Probability of a Decoding Error , 2000, Combinatorics, Probability and Computing.

[9]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[10]  Andrea Montanari,et al.  Finite-Length Scaling and Finite-Length Shift for Low-Density Parity-Check Codes , 2004, ArXiv.

[11]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[12]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[13]  Richard E. Blahut,et al.  Bit error rate estimate of finite length codes , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[14]  V. F. Kolchin,et al.  Random Graphs: Contents , 1998 .

[15]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[16]  V. E. Britikov Asymptotic number of forests from unrooted trees , 1988 .

[17]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[18]  P. Groeneboom Brownian motion with a parabolic drift and airy functions , 1989 .

[19]  Henry D. Pfister Finite-length analysis of a capacity-achieving ensemble for the binary erasure channel , 2005, IEEE Information Theory Workshop, 2005..

[20]  T. Richrdson,et al.  Finite-length analysis of various low-density parity-check ensembles for the binary erasure channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[21]  Alon Orlitsky,et al.  Finite-length analysis of LDPC codes with large left degrees , 2002, Proceedings IEEE International Symposium on Information Theory,.

[22]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[23]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.

[24]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.