Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue

[1]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[2]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[3]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[4]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[5]  S. Nelson,et al.  Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. , 2000, Journal of neurophysiology.

[6]  Bartlett W. Mel,et al.  Choice and Value Flexibility Jointly Contribute to the Capacity of a Subsampled Quadratic Classifier , 2000, Neural Computation.

[7]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[8]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[9]  Eduard Korkotian,et al.  Dendritic spine formation and pruning: common cellular mechanisms? , 2000, Trends in Neurosciences.

[10]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[11]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[12]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[13]  A. Matus Postsynaptic actin and neuronal plasticity , 1999, Current Opinion in Neurobiology.

[14]  D Kleinfeld,et al.  Supralinear Summation of Synaptic Inputs by an Invertebrate Neuron: Dendritic Gain Is Mediated by an “Inward Rectifier” K+ Current , 1999, The Journal of Neuroscience.

[15]  G. Elston,et al.  Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Kristen M Harris,et al.  Structure, development, and plasticity of dendritic spines , 1999, Current Opinion in Neurobiology.

[17]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[18]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[19]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[20]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[21]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[22]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[23]  G. Barrionuevo,et al.  Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Henze,et al.  Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. , 1998, Journal of Neurophysiology.

[25]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[26]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[27]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[28]  M. Margulis,et al.  Temporal integration can readily switch between sublinear and supralinear summation. , 1998, Journal of neurophysiology.

[29]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[31]  Wolfgang Maass,et al.  Dynamic Stochastic Synapses as Computational Units , 1997, Neural Computation.

[32]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[33]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[34]  J. Seamans,et al.  Contributions of Voltage-Gated Ca2+ Channels in the Proximal versus Distal Dendrites to Synaptic Integration in Prefrontal Cortical Neurons , 1997, The Journal of Neuroscience.

[35]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[36]  P. Schwindt,et al.  Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. , 1997, Journal of neurophysiology.

[37]  P. Riegler,et al.  VAPNIK-CHERVONENKIS ENTROPY OF THE SPHERICAL PERCEPTRON , 1997 .

[38]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[39]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[40]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[41]  R. Lipowsky,et al.  Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. , 1996, Journal of neurophysiology.

[42]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[43]  H. Markram,et al.  Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class , 1996, The Journal of Neuroscience.

[44]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[45]  Stephen J. Smith,et al.  The Dynamics of Dendritic Structure in Developing Hippocampal Slices , 1996, The Journal of Neuroscience.

[46]  Barak A. Pearlmutter,et al.  VC Dimension of an Integrate-and-Fire Neuron Model , 1996, Neural Computation.

[47]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[48]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[49]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[50]  K. Nakamura,et al.  Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. , 1995, Journal of neurophysiology.

[51]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[52]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[53]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[54]  C. Gilbert,et al.  Axonal sprouting accompanies functional reorganization in adult cat striate cortex , 1994, Nature.

[55]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[57]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[59]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[60]  J. Deuchars,et al.  Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation , 1993, Neuroscience.

[61]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[62]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[63]  M. Stewart,et al.  Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea‐pig hippocampus. , 1992, The Journal of physiology.

[64]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[65]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[66]  Bartlett W. Mel The Clusteron: Toward a Simple Abstraction for a Complex Neuron , 1991, NIPS.

[67]  I Segev,et al.  Propagation of action potentials along complex axonal trees. Model and implementation. , 1991, Biophysical journal.

[68]  H. Pockberger,et al.  Electrophysiological and morphological properties of rat motor cortex neurons in vivo , 1991, Brain Research.

[69]  C. Shatz Impulse activity and the patterning of connections during cns development , 1990, Neuron.

[70]  E Gould,et al.  Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  N. Daw,et al.  The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. , 1990, Journal of neurophysiology.

[72]  Nicholas P. Poolos,et al.  Dendritic action potentials activated by NMDA receptor-mediated EPSPs in CA1 hippocampal pyramidal cells , 1990, Brain Research.

[73]  Scott E. Fraser,et al.  Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: An in vivo confocal microscopic study , 1990, Neuron.

[74]  C. H. Bailey,et al.  The anatomy of a memory: convergence of results across a diversity of tests , 1988, Trends in Neurosciences.

[75]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[76]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[77]  Geoffrey E. Hinton,et al.  A general framework for parallel distributed processing , 1986 .

[78]  J. Larson,et al.  Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. , 1985, Behavioral and neural biology.

[79]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[80]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[81]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[83]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[84]  D. Prince,et al.  Electrophysiology of isolated hippocampal pyramidal dendrites , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[87]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[88]  L C Katz,et al.  Neurotrophins and synaptic plasticity. , 1999, Annual review of neuroscience.

[89]  Bartlett W. Mel Why Have Dendrites? A Computational Perspective , 1999 .

[90]  K. Miller Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns* , 1996 .

[91]  R. Malinow,et al.  In vivo development of neuronal structure and function. , 1996, Cold Spring Harbor symposia on quantitative biology.

[92]  M. Bear,et al.  Long-term depression in hippocampus. , 1996, Annual review of neuroscience.

[93]  J S Liaw,et al.  Dynamic synapse: A new concept of neural representation and computation , 1996, Hippocampus.

[94]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[95]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[96]  Ternary Structures ON REPRESENTATION OF , 1995 .

[97]  Y. Miyashita,et al.  The role of a thiol protease in the proteolysis of connectin in rabbit skeletal muscle myofibrils , 1993 .

[98]  B. Connors,et al.  Regenerative activity in apical dendrites of pyramidal cells in neocortex. , 1993, Cerebral cortex.

[99]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[100]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[101]  P. Schwartzkroin,et al.  Electrophysiology of Hippocampal Neurons , 1987 .

[102]  Wolfgang Spohn,et al.  The Representation of , 1986 .

[103]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[104]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.

[105]  Samuel Bogoch,et al.  The biochemistry of memory , 1968 .

[106]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[107]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .