Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

[1]  Edriss S. Titi,et al.  A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics , 2016, 1602.05995.

[2]  M. U. Altaf,et al.  Downscaling the 2D Bénard convection equations using continuous data assimilation , 2015, Computational Geosciences.

[3]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.

[4]  Edriss S. Titi,et al.  Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study , 2015, 1506.03709.

[5]  Edriss S. Titi,et al.  A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.

[6]  Edriss S. Titi,et al.  Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.

[7]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[8]  Edriss S. Titi,et al.  Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.

[9]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[10]  Edriss S. Titi,et al.  Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.

[11]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[12]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[13]  Edriss S. Titi,et al.  Numerical Criterion for the Stabilization of Steady States of the Navier-Stokes Equations , 1999 .

[14]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[15]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[16]  Roger Temam,et al.  Attractors for the Be´nard problem: existence and physical bounds on their fractal dimension , 1987 .

[17]  M. Ghil,et al.  Time-Continuous Assimilation of Remote-Sounding Data and Its Effect an Weather Forecasting , 1979 .

[18]  Michael Ghil,et al.  A balanced diagnostic system compatible with a barotropic prognostic model , 1977 .

[19]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[20]  D. Luenberger An introduction to observers , 1971 .

[21]  J. Charney,et al.  Use of Incomplete Historical Data to Infer the Present State of the Atmosphere , 1969 .

[22]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..

[23]  Hantaek Bae Navier-Stokes equations , 1992 .