Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter

The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic equations whose applicability to processes in the hot and expanding early universe is questionable. The approximations implied by the state-of-the-art description can be tested in a first-principle approach based on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases. Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In particular, this means that the structure of the equations automatically ensures that the asymmetry vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects that can be studied in the framework of nonequilibrium field theory.

[1]  A. Ibarra,et al.  A Lower bound on the right-handed neutrino mass from leptogenesis , 2002, hep-ph/0202239.

[2]  S. Mrówczyński,et al.  Transport theory beyond binary collisions , 2004, hep-ph/0406097.

[3]  Yu. B. Ivanov,et al.  Resonance transport and kinetic entropy , 1999 .

[4]  P. Danielewicz QUANTUM THEORY OF NONEQUILIBRIUM PROCESSES. II. APPLICATION TO NUCLEAR COLLISIONS , 1984 .

[5]  M. Veltman Unitarity and causality in a renormalizable field theory with unstable particles , 1963 .

[6]  Köhler,et al.  Extended quasiparticle approximation and Brueckner theory. , 1993, Physical review. C, Nuclear physics.

[7]  Y. Wong,et al.  Full Boltzmann equations for leptogenesis including scattering , 2009, 0907.0205.

[8]  A. Tranberg Quantum field thermalization in expanding backgrounds , 2008, 0806.3158.

[9]  Hu,et al.  Closed-time-path functional formalism in curved spacetime: Application to cosmological back-reaction problems. , 1987, Physical review. D, Particles and fields.

[10]  J. Gagnon First Principles Calculation of the Baryon Asymmetry of the Universe: Generalities and Application , 2009 .

[11]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[12]  M. Losada,et al.  Flavour issues in leptogenesis , 2006, hep-ph/0601083.

[13]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[14]  Extended quasiparticle approximation for relativistic electrons in plasmas , 2006 .

[15]  J. Smit,et al.  Equilibration in phi**4 theory in 3+1 dimensions , 2005, hep-ph/0503287.

[16]  C. Isham Twisted quantum fields in a curved space–time , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  S. Hannestad,et al.  Decay of heavy Majorana neutrinos studied using the full Boltzmann equation, including its implications for leptogenesis , 2006, hep-ph/0609025.

[18]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[19]  Flavour matters in leptogenesis , 2006, hep-ph/0605281.

[20]  F. Vissani,et al.  Finite temperature effects on CP violating asymmetries , 1997, hep-ph/9704366.

[21]  Lipavsk,et al.  Quasiparticle Boltzmann equation in semiconductors. , 1995, Physical review. B, Condensed matter.

[22]  Nonperturbative renormalization for 2PI effective action techniques , 2005, hep-ph/0503240.

[23]  B. Hao,et al.  EQUILIBRIUM AND NONEQUILIBRIUM FORMALISMS MADE UNIFIED , 1985 .

[24]  Self-consistent approximations to non-equilibrium many-body theory , 1998, hep-ph/9807351.

[25]  Renormalization of Φ-derivable approximations in scalar field theories , 2003, hep-ph/0312085.

[26]  J. Frère,et al.  Is leptogenesis falsifiable at LHC , 2008, 0806.0841.

[27]  Transport equations for chiral fermions to order ℏ and electroweak baryogenesis: Part II , 2004, hep-ph/0406140.

[28]  Renormalization in self-consistent approximation schemes at finite temperature: Theory , 2001, hep-ph/0107200.

[29]  J. Berges Introduction to Nonequilibrium Quantum Field Theory , 2004, hep-ph/0409233.

[30]  A. Anisimov,et al.  The CP-asymmetry in resonant leptogenesis , 2005, hep-ph/0511248.

[31]  M. Lindner,et al.  Deriving Boltzmann equations from Kadanoff-Baym equations in curved space-time , 2008, 0807.4551.

[32]  A. Simone,et al.  Quantum Boltzmann equations and leptogenesis , 2007, hep-ph/0703175.

[33]  S. King,et al.  Flavour-dependent leptogenesis with sequential dominance , 2006, hep-ph/0609038.

[34]  H. Hees,et al.  Renormalization in Self-Consistent Approximation schemes at Finite Temperature III: Global Symmetries , 2002, hep-ph/0203008.

[35]  A. Pilaftsis,et al.  Resonant Leptogenesis , 2003, hep-ph/0309342.

[36]  W. Cassing,et al.  Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory , 2003, hep-ph/0307353.

[37]  S. Blanchet,et al.  Flavour effects on leptogenesis predictions , 2006, hep-ph/0607330.

[38]  R. Mohapatra,et al.  Neutrino mass seesaw at the weak scale, the baryon asymmetry, and the Large Hadron Collider , 2008, 0812.3837.

[39]  J. Cornwall,et al.  Effective Action for Composite Operators , 1974 .

[40]  Winter Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems. , 1985, Physical review. D, Particles and fields.

[41]  M. Lindner,et al.  Comparison of Boltzmann kinetics with quantum dynamics for a chiral Yukawa model far from equilibrium , 2007, 0710.2917.

[42]  N. P. Landsman,et al.  Real- and imaginary-time field theory at finite temperature and density , 1987 .

[43]  Range of validity of transport equations , 2005, hep-ph/0512155.

[44]  Electroweak-scale resonant leptogenesis , 2005, hep-ph/0506107.

[45]  G. Aarts,et al.  Classical aspects of quantum fields far from equilibrium. , 2001, Physical review letters.

[46]  Towards a complete theory of thermal leptogenesis in the SM and MSSM , 2003, hep-ph/0310123.

[47]  Controlled nonperturbative dynamics of quantum fields out-of-equilibrium , 2001, hep-ph/0105311.

[48]  S. Blanchet,et al.  Viability of Dirac phase leptogenesis , 2007, 0707.3024.

[49]  On the CP asymmetries in Majorana neutrino decays , 1997, hep-ph/9712468.

[50]  Andrej Dmitrievich Sakharov,et al.  SPECIAL ISSUE: Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe , 1991 .

[51]  Leo P. Kadanoff,et al.  Quantum Statistical Mechanics , 2018 .

[52]  Comparison of Boltzmann Equations with Quantum Dynamics for Scalar Fields , 2005, hep-ph/0512147.

[53]  Thermalization of fermionic quantum fields , 2002, hep-ph/0212404.

[54]  A. Simone,et al.  On resonant leptogenesis , 2007, 0705.2183.

[55]  M. Seco,et al.  MSSM electroweak baryogenesis and flavour mixing in transport equations , 2005, hep-ph/0505103.

[56]  W. Buchmuller,et al.  Quantum mechanics of baryogenesis , 2000, hep-ph/0004145.

[57]  M. Plümacher Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification , 1998 .

[58]  Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .

[59]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[60]  Y. Nir,et al.  The importance of flavor in leptogenesis , 2006, hep-ph/0601084.

[61]  M. Shaposhnikov The nuMSM, leptonic asymmetries, and properties of singlet fermions , 2008, 0804.4542.

[62]  G. Giudice,et al.  Supersymmetric Leptogenesis and the Gravitino Bound , 2008, 0804.0166.

[63]  Thermalization of quantum fields from time-reversal invariant evolution equations , 2000, hep-ph/0006160.

[64]  M. Drewes,et al.  Nonequilibrium dynamics of scalar fields in a thermal bath , 2008, 0812.1934.

[65]  S. Borsányi,et al.  Renormalized nonequilibrium quantum field theory: Scalar fields , 2008, 0809.0496.

[66]  Pawel Danielewicz,et al.  Quantum theory of nonequilibrium processes, I , 1984 .

[67]  Andreas Hohenegger Solving the homogeneous Boltzmann equation with arbitrary scattering kernel , 2008, 0806.3098.

[68]  J. Berges n -particle irreducible effective action techniques for gauge theories , 2004, hep-ph/0401172.

[69]  Hu,et al.  Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. , 1988, Physical review. D, Particles and fields.

[70]  Michael S. Turner,et al.  The Early Universe , 1990 .

[71]  P. Bakshi,et al.  Expectation Value Formalism in Quantum Field Theory. II , 1963 .

[72]  TeV scale leptogenesis, θ13 and doubly charged particles at LHC , 2005, hep-ph/0508037.

[73]  Transport equations for chiral fermions to order \hbar and electroweak baryogenesis: Part I , 2003, hep-ph/0312110.

[74]  Baryogenesis through leptogenesis , 1999, hep-ph/9911315.

[75]  Julian Schwinger,et al.  Brownian Motion of a Quantum Oscillator , 1961 .

[76]  A. Boyarsky,et al.  The Role of Sterile Neutrinos in Cosmology and Astrophysics , 2008, 0901.0011.

[77]  Apostolos Pilaftsis CP violation and baryogenesis due to heavy Majorana neutrinos , 1997 .

[78]  G. Röpke,et al.  Photon production by relativistic electrons in plasmas , 2006 .

[79]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[80]  S. Antusch,et al.  Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis , 2006, hep-ph/0611232.

[81]  E. Iancu,et al.  The quark-gluon plasma: collective dynamics and hard thermal loops , 2001, hep-ph/0101103.

[82]  M. Muller,et al.  Kadanoff-Baym equations with non-Gaussian initial conditions: The equilibrium limit , 2009, 0904.3600.

[83]  O. Vives,et al.  On the full Boltzmann equations for leptogenesis , 2009, 0905.4834.

[84]  V. Kuzmin,et al.  On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe , 1985 .

[85]  Yu. B. Ivanov,et al.  Exact Conservation Laws of the Gradient Expanded Kadanoff–Baym Equations , 2001 .