BackFi: High Throughput WiFi Backscatter

We present BackFi, a novel communication system that enables high throughput, long range communication between very low power backscatter devices and WiFi APs using ambient WiFi transmissions as the excitation signal. Specifically, we show that it is possible to design devices and WiFi APs such that the WiFi AP in the process of transmitting data to normal WiFi clients can decode backscatter signals which the devices generate by modulating information on to the ambient WiFi transmission. We show via prototypes and experiments that it is possible to achieve communication rates of up to 5 Mbps at a range of 1 m and 1 Mbps at a range of 5 meters. Such performance is an order to three orders of magnitude better than the best known prior WiFi backscatter system [27,25]. BackFi design is energy efficient, as it relies on backscattering alone and needs insignificant power, hence the energy consumed per bit is small.

[1]  Pan Hu,et al.  EkhoNet: High-Speed Ultra Low-Power Backscatter for Next Generation Sensors , 2015, GETMBL.

[2]  Angli Liu,et al.  Turbocharging ambient backscatter communication , 2014, SIGCOMM.

[3]  David Wetherall,et al.  Dewdrop: An Energy-Aware Runtime for Computational RFID , 2011, NSDI.

[4]  Deepak Ganesan,et al.  Enabling Bit-by-Bit Backscatter Communication in Severe Energy Harvesting Environments , 2014, NSDI.

[5]  KatabiDina,et al.  Efficient and reliable low-power backscatter networks , 2012 .

[6]  Dinan Gunawardena,et al.  Rethinking Indoor Wireless Mesh Design: Low Power, Low Frequency, Full-Duplex , 2010, 2010 Fifth IEEE Workshop on Wireless Mesh Networks.

[7]  Sachin Katti,et al.  Full duplex radios , 2013, SIGCOMM.

[8]  Ashutosh Sabharwal,et al.  Passive Self-Interference Suppression for Full-Duplex Infrastructure Nodes , 2013, IEEE Transactions on Wireless Communications.

[9]  S. J. Thomas,et al.  A 96 Mbit/sec, 15.5 pJ/bit 16-QAM modulator for UHF backscatter communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[10]  D. G. Brennan Linear Diversity Combining Techniques , 1959, Proceedings of the IRE.

[11]  Joshua R. Smith,et al.  Sifting through the airwaves: Efficient and scalable multiband RF harvesting , 2014, 2014 IEEE International Conference on RFID (IEEE RFID).

[12]  Andreas F. Molisch,et al.  UWB Systems for Wireless Sensor Networks , 2009, Proceedings of the IEEE.

[13]  N. E. Roberts,et al.  A 98nW wake-up radio for wireless body area networks , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[14]  D.J. Yeager,et al.  Wirelessly-Charged UHF Tags for Sensor Data Collection , 2008, 2008 IEEE International Conference on RFID.

[15]  David D. Wentzloff,et al.  A 116nW multi-band wake-up receiver with 31-bit correlator and interference rejection , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

[16]  Tadahiro Kuroda,et al.  A battery-less WiFi-BER modulated data transmitter with ambient radio-wave energy harvesting , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[17]  Kevin Fu,et al.  On the limits of effective hybrid micro-energy harvesting on mobile CRFID sensors , 2010, MobiSys '10.

[18]  Deepak Ganesan,et al.  Flit: a bulk transmission protocol for RFID-scale sensors , 2012, MobiSys '12.

[19]  Philip Levis,et al.  Achieving single channel, full duplex wireless communication , 2010, MobiCom.

[20]  Vincent Beroulle,et al.  EPC Class 1 GEN 2 UHF RFID tag emulator for robustness evaluation and improvement , 2013, 2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS).

[21]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[22]  Ratul Mahajan,et al.  Measurement-based characterization of 802.11 in a hotspot setting , 2005, E-WIND '05.

[23]  Stefan Mahlknecht,et al.  An Ultra Low Power Wakeup Receiver for Wireless Sensor Nodes , 2009, 2009 Third International Conference on Sensor Technologies and Applications.

[24]  Chi-Chih Chen,et al.  Design of an efficient ambient WiFi energy harvesting system , 2012 .

[25]  Hiroyuki Arai,et al.  DTV band micropower RF energy-harvesting circuit architecture and performance analysis , 2011, 2011 IEEE International Conference on RFID-Technologies and Applications.

[26]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[27]  Joshua R. Smith,et al.  Design of a Passively-Powered, Programmable Sensing Platform for UHF RFID Systems , 2007, 2007 IEEE International Conference on RFID.

[28]  Ashutosh Sabharwal,et al.  Understanding the impact of phase noise on active cancellation in wireless full-duplex , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[29]  John G. Proakis,et al.  Digital Communications , 1983 .

[30]  Alanson P. Sample,et al.  Wireless Ambient Radio Power , 2013 .

[31]  Ashutosh Sabharwal,et al.  Experiment-Driven Characterization of Full-Duplex Wireless Systems , 2011, IEEE Transactions on Wireless Communications.

[32]  Injong Rhee,et al.  WiFox: scaling WiFi performance for large audience environments , 2012, CoNEXT '12.

[33]  Matthew S. Reynolds,et al.  Every smart phone is a backscatter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices , 2015, 2015 IEEE International Conference on RFID (RFID).

[34]  M. S. Reynolds,et al.  Feasibility of wireless sensors using ambient 2.4GHz RF energy , 2012, 2012 IEEE Sensors.

[35]  P.V. Nikitin,et al.  Theory and measurement of backscattering from RFID tags , 2006, IEEE Antennas and Propagation Magazine.

[36]  Shyamal Patel,et al.  A review of wearable sensors and systems with application in rehabilitation , 2012, Journal of NeuroEngineering and Rehabilitation.

[37]  Dave Levin,et al.  On the Fidelity of 802.11 Packet Traces , 2008, PAM.

[38]  Joshua R. Smith,et al.  Wi-fi backscatter , 2014, SIGCOMM 2015.

[39]  Piotr Indyk,et al.  Efficient and reliable low-power backscatter networks , 2012, CCRV.

[40]  David Wetherall,et al.  A software radio-based UHF RFID reader for PHY/MAC experimentation , 2011, 2011 IEEE International Conference on RFID.

[41]  Sachin Katti,et al.  Full duplex backscatter , 2013, HotNets.

[42]  Benjamin Ransford,et al.  Moo : A Batteryless Computational RFID and Sensing Platform , 2011 .

[43]  Joshua R. Smith,et al.  Experimental results with two wireless power transfer systems , 2009, 2009 IEEE Radio and Wireless Symposium.

[44]  Sampath Rangarajan,et al.  MIDU: enabling MIMO full duplex , 2012, Mobicom '12.

[45]  Sachin Katti,et al.  FastForward , 2014, SIGCOMM.

[46]  Philip Levis,et al.  Practical, real-time, full duplex wireless , 2011, MobiCom.

[47]  Sachin Katti,et al.  Full Duplex MIMO Radios , 2014, NSDI.

[48]  Nathan Michael Pletcher,et al.  Ultra-low power wake -up receivers for wireless sensor networks , 2008 .

[49]  Ashutosh Sabharwal,et al.  On the Impact of Phase Noise on Active Cancelation in Wireless Full-Duplex , 2012, IEEE Transactions on Vehicular Technology.