Two-dimensional quantum gas in a hybrid surface trap

We demonstrate the realization of a two-dimensional (2D) quantum gas in a smooth optical surface trap. Using a combination of evanescent wave, standing wave, and magnetic potentials, we create a long-lived quantum gas deep in the 2D regime at a distance of a few microns from a glass surface. To realize a system suitable for many-body quantum simulation, we introduce methods such as broadband ``white'' light to create evanescent and standing waves to realize a smooth potential with a trap frequency aspect ratio of 300:1:1. We are able to detect phase fluctuations and vortices, and we demonstrate cooling to degeneracy and low disorder in the 2D configuration.

[1]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[2]  Sidorov,et al.  Quantum-state-selective mirror reflection of atoms by laser light. , 1988, Physical review letters.

[3]  G. Kino,et al.  Solid immersion microscope , 1990 .

[4]  A. Landragin,et al.  Specular versus diffuse reflection of atoms from an evanescent-wave mirror. , 1996, Optics letters.

[5]  Courtois,et al.  Measurement of the van der Waals Force in an Atomic Mirror. , 1996, Physical review letters.

[6]  R. Grimm,et al.  Surface Trap for Cs atoms based on Evanescent-Wave Cooling , 1997 .

[7]  T. Hänsch,et al.  Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap , 1998 .

[8]  R. Grimm,et al.  Optical dipole traps for neutral atoms , 1999, physics/9902072.

[9]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[10]  T. Hänsch,et al.  Magnetic transport of trapped cold atoms over a large distance , 2001 .

[11]  M. Lewenstein,et al.  Observation of phase fluctuations in elongated Bose-Einstein condensates. , 2001, Physical review letters.

[12]  D. Rychtarik,et al.  Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions. , 2002, Physical review letters.

[13]  E. Cornell,et al.  Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with Bose-Einstein condensates , 2004, cond-mat/0403254.

[14]  Cheng Chin,et al.  Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. , 2004, Physical review letters.

[15]  Quasi-2D confinement of a BEC in a combined optical and magnetic potential , 2004, cond-mat/0410101.

[16]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[17]  Two-dimensional Bose-Einstein condensate in an optical surface trap. , 2003, Physical review letters.

[18]  Superfluid to Mott insulator transition in one, two, and three dimensions , 2004, cond-mat/0404338.

[19]  J. Dalibard,et al.  Observation of phase defects in quasi-two-dimensional Bose-Einstein condensates. , 2005, Physical review letters.

[20]  E. A. Cornell,et al.  Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate , 2005 .

[21]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[22]  E. Cornell,et al.  Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates. , 2007, Physical review letters.

[23]  E. Cornell,et al.  Measuring Electric Fields from Surface Contaminants with Neutral Atoms , 2007, 0705.2027.

[24]  W. Phillips,et al.  Mott-insulator transition in a two-dimensional atomic Bose gas. , 2007, Physical review letters.

[25]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[26]  C. Zimmermann,et al.  Towards surface quantum optics with Bose–Einstein condensates in evanescent waves , 2009 .

[27]  K. Helmerson,et al.  Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. , 2008, Physical review letters.