A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes

Abstract Thermal and hydrothermal stabilities of sol-gel derived γ-alumina, titania and zirconia membranes have been investigated using comprehensive experimental data on the pore and phase structure of these three membranes after heat treatment at high temperatures under air and steam/air atmospheres. For all three ceramic membranes heat treatment results in a decrease in the surface area and an increase in the pore size. The effect of sintering on the change of the pore structure of the three membranes decreases in the order: zirconia > titania > alumina. The presence of steam enhances the pore structure change of these three membranes at elevated temperatures, and the extent of the enhancing effects for the three membranes decreases in the same order. At temperatures higher than 900 (alumina), 600 (zirconia) and 450°C (titania), metastable to stable phase transformation occurs, causing a substantial change in the pore structure of all three membranes, for which the extent of the pore structure change decreases in the order: alumina > zirconia > titania. Presence of steam in the phase-transformation region also enhances the pore structure change, especially of zirconia and titania membranes. Doping drying control chemical additive alters the pore structure of these three ceramic membranes. These comprehensive experimental data are explained using the surface diffusion sintering mechanism, surface nucleation mechanism as well as the microstructure of the sol-gel synthesized ceramic materials.

[1]  Frederick F. Lange,et al.  Sinterability of Agglomerated Powders , 1984 .

[2]  J. Fabre,et al.  Inorganic membranes obtained by sol-gel techniques , 1988 .

[3]  J. Fabre,et al.  Microporous Layers from Sol-Gel Techniques , 1986 .

[4]  A. Burggraaf,et al.  Synthesis of ceramic membranes , 1992 .

[5]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[6]  M. Anderson,et al.  Titania and alumina ceramic membranes , 1988 .

[7]  M. Anderson,et al.  Sol–Gel Route to Synthesis of Microporous Ceramic Membranes: Thermal Stability of TiO2–ZrO2Mixed Oxides , 1993 .

[8]  Yuehe Lin,et al.  Experimental studies on pore size change of porous ceramic membranes after modification , 1993 .

[9]  O. J. Whittemore,et al.  Pore growth during the initial stages of sintering ceramics , 1974 .

[10]  H. Schaper,et al.  A quantitative investigation of the phase transformation of gamma to alpha alumina with high temperature DTA , 1984 .

[11]  A. Burggraaf,et al.  The preparation and characterization of alumina membranes with ultra-fine pores , 1984 .

[12]  A. J. Burggraaf,et al.  Thermal stability and its improvement of the alumina membrane top-layers prepared by sol-gel methods , 1991 .

[13]  A. Burggraaf,et al.  Gas and surface diffusion in modified γ-alumina systems , 1989 .

[14]  M. Anderson,et al.  Physico-Chemical Properties of Supported and Unsupported γ-Al2-O3 and TiO2 Ceramic Membranes , 1988 .

[15]  Xiaojie Xu,et al.  Nucleation and Crystallization of Na2O · 2CaO · 3SiO2 Glass by Differential Thermal Analysis , 1991 .

[16]  M. Pijolat,et al.  Initial Sintering of Submicrometer Titania Anatase Powder , 1990 .

[17]  R. Garvie,et al.  Stabilization of the tetragonal structure in zirconia microcrystals , 1978 .

[18]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[19]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[20]  J. Fabre,et al.  New Inorganic Ultrafiltration Membranes: Titania and Zirconia Membranes , 1989 .

[21]  C. Guizard,et al.  Silica membranes by the sol-gel process , 1989 .