Bi-goal evolution for many-objective optimization problems

This paper presents a meta-objective optimization approach, called Bi-Goal Evolution (BiGE), to deal with multi-objective optimization problems with many objectives. In multi-objective optimization, it is generally observed that 1) the conflict between the proximity and diversity requirements is aggravated with the increase of the number of objectives and 2) the Pareto dominance loses its effectiveness for a high-dimensional space but works well on a low-dimensional space. Inspired by these two observations, BiGE converts a given multi-objective optimization problem into a bi-goal (objective) optimization problem regarding proximity and diversity, and then handles it using the Pareto dominance relation in this bi-goal domain. Implemented with estimation methods of individuals' performance and the classic Pareto nondominated sorting procedure, BiGE divides individuals into different nondominated layers and attempts to put well-converged and well-distributed individuals into the first few layers. From a series of extensive experiments on four groups of well-defined continuous and combinatorial optimization problems with 5, 10 and 15 objectives, BiGE has been found to be very competitive against five state-of-the-art algorithms in balancing proximity and diversity. The proposed approach is the first step towards a new way of addressing many-objective problems as well as indicating several important issues for future development of this type of algorithms.

[1]  Tapabrata Ray,et al.  A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems , 2011, IEEE Transactions on Evolutionary Computation.

[2]  Qingfu Zhang,et al.  Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms , 2013, IEEE Transactions on Evolutionary Computation.

[3]  Kiyoshi Tanaka,et al.  Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization , 2011, EMO.

[4]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[5]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[6]  Sanaz Mostaghim,et al.  Distance Based Ranking in Many-Objective Particle Swarm Optimization , 2008, PPSN.

[7]  Carlos A. Coello Coello,et al.  Study of preference relations in many-objective optimization , 2009, GECCO.

[8]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[9]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[10]  Hisao Ishibuchi,et al.  Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space , 2010, PPSN.

[11]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[12]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[13]  M. Ehrgott Multiobjective Optimization , 2008, AI Mag..

[14]  Tobias Friedrich,et al.  Approximation quality of the hypervolume indicator , 2013, Artif. Intell..

[15]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[16]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[17]  Rui Wang,et al.  Preference-inspired co-evolutionary algorithms , 2013 .

[18]  Carlos A. Coello Coello,et al.  Two novel approaches for many-objective optimization , 2010, IEEE Congress on Evolutionary Computation.

[19]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[20]  Ernesto Benini,et al.  Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms , 2003, Evolutionary Computation.

[21]  Markus Wagner,et al.  Efficient parent selection for Approximation-Guided Evolutionary multi-objective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[22]  Markus Wagner,et al.  A fast approximation-guided evolutionary multi-objective algorithm , 2013, GECCO '13.

[23]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[24]  Hisao Ishibuchi,et al.  Meta-level multi-objective formulations of set optimization for multi-objective optimization problems: multi-reference point approach to hypervolume maximization , 2014, GECCO.

[25]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[26]  Hua Xu,et al.  Evolutionary many-objective optimization using ensemble fitness ranking , 2014, GECCO.

[27]  M. Jensen Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation , 2004 .

[28]  Tianyou Chai,et al.  Large-dimensional multi-objective evolutionary algorithms based on improved average ranking , 2010, 49th IEEE Conference on Decision and Control (CDC).

[29]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[30]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Shengxiang Yang,et al.  A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization , 2013, EMO.

[33]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[34]  Joseph J. Talavage,et al.  A Tradeoff Cut Approach to Multiple Objective Optimization , 1980, Oper. Res..

[35]  Tobias Friedrich,et al.  Approximating the volume of unions and intersections of high-dimensional geometric objects , 2008, Comput. Geom..

[36]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[37]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[38]  Peter J. Fleming,et al.  Diversity Management in Evolutionary Many-Objective Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[39]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[40]  K. C. Seow,et al.  MULTIOBJECTIVE DESIGN OPTIMIZATION BY AN EVOLUTIONARY ALGORITHM , 2001 .

[41]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[42]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[43]  Jinhua Zheng,et al.  Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization , 2010, PPSN.

[44]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[45]  Mikkel T. Jensen,et al.  Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation , 2004, J. Math. Model. Algorithms.

[46]  Kiyoshi Tanaka,et al.  Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.

[47]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[48]  Tobias Friedrich,et al.  An Efficient Algorithm for Computing Hypervolume Contributions , 2010, Evolutionary Computation.

[49]  Dylan Jones,et al.  Incorporating additional meta-objectives into the extended lexicographic goal programming framework , 2013, Eur. J. Oper. Res..

[50]  Marc Schoenauer,et al.  An Evolutionary Metaheuristic Based on State Decomposition for Domain-Independent Satisficing Planning , 2010, ICAPS.

[51]  Hisao Ishibuchi,et al.  Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions , 2010, GECCO '10.

[52]  Ye Tian,et al.  A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[53]  Lucas Bradstreet,et al.  A Fast Way of Calculating Exact Hypervolumes , 2012, IEEE Transactions on Evolutionary Computation.

[54]  Shengxiang Yang,et al.  A Grid-Based Evolutionary Algorithm for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[55]  Frank Neumann,et al.  Multiplicative approximations and the hypervolume indicator , 2009, GECCO.

[56]  Jun Zhang,et al.  Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[57]  Peter J. Fleming,et al.  On finding well-spread pareto optimal solutions by preference-inspired co-evolutionary algorithm , 2013, GECCO '13.

[58]  Kiyoshi Tanaka,et al.  Self-Controlling Dominance Area of Solutions in Evolutionary Many-Objective Optimization , 2010, SEAL.

[59]  Peter J. Fleming,et al.  Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .

[60]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[61]  Gary G. Yen,et al.  A new fitness evaluation method based on fuzzy logic in multiobjective evolutionary algorithms , 2012, 2012 IEEE Congress on Evolutionary Computation.

[62]  Philippe Morignot,et al.  Genetic Planning Using Variable Length Chromosomes , 2005, ICAPS.

[63]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[64]  Shengxiang Yang,et al.  Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[65]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[66]  Bharat M. Deshpande,et al.  Scalability of Population-Based Search Heuristics for Many-Objective Optimization , 2013, EvoApplications.

[67]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[68]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[69]  Tobias Friedrich,et al.  The logarithmic hypervolume indicator , 2011, FOGA '11.

[70]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[71]  Xiaodong Li,et al.  Using a distance metric to guide PSO algorithms for many-objective optimization , 2009, GECCO.

[72]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[73]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[74]  Shengxiang Yang,et al.  A Performance Comparison Indicator for Pareto Front Approximations in Many-Objective Optimization , 2015, GECCO.

[75]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[76]  DebKalyanmoy,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005 .

[77]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[78]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[79]  Carlos A. Coello Coello,et al.  Effective ranking + speciation = Many-objective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[80]  L. Jain,et al.  Evolutionary multiobjective optimization : theoretical advances and applications , 2005 .

[81]  Gary G. Yen,et al.  Ranking many-objective Evolutionary Algorithms using performance metrics ensemble , 2013, 2013 IEEE Congress on Evolutionary Computation.

[82]  Frank Neumann,et al.  Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point , 2013, Evolutionary Computation.

[83]  Hisao Ishibuchi,et al.  Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems , 2015, IEEE Transactions on Evolutionary Computation.

[84]  Yong Wang,et al.  Combining Multiobjective Optimization With Differential Evolution to Solve Constrained Optimization Problems , 2012, IEEE Transactions on Evolutionary Computation.

[85]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[86]  Shengxiang Yang,et al.  Diversity Comparison of Pareto Front Approximations in Many-Objective Optimization , 2014, IEEE Transactions on Cybernetics.

[87]  Markus Wagner,et al.  Approximation-Guided Evolutionary Multi-Objective Optimization , 2011, IJCAI.

[88]  Frank Neumann,et al.  On the Effects of Adding Objectives to Plateau Functions , 2009, IEEE Transactions on Evolutionary Computation.

[89]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.

[90]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[91]  Carlos A. Coello Coello,et al.  Ranking Methods in Many-Objective Evolutionary Algorithms , 2009, Nature-Inspired Algorithms for Optimisation.

[92]  Kiyoshi Tanaka,et al.  Adaptive ∈-ranking on MNK-Landscapes , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[93]  Marco Laumanns,et al.  Stochastic convergence of random search methods to fixed size Pareto front approximations , 2011, Eur. J. Oper. Res..

[94]  Evan J. Hughes,et al.  Many-objective directed evolutionary line search , 2011, GECCO '11.

[95]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.

[96]  Peter J. Fleming,et al.  Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation , 2011, EMO.

[97]  Kalyanmoy Deb,et al.  A review of hybrid evolutionary multiple criteria decision making methods , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[98]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[99]  Marc Schoenauer,et al.  Pareto-Based Multiobjective AI Planning , 2013, IJCAI.

[100]  Tobias Friedrich,et al.  Speeding up many-objective optimization by Monte Carlo approximations , 2013, Artif. Intell..

[101]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[102]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[103]  Shengxiang Yang,et al.  A test problem for visual investigation of high-dimensional multi-objective search , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[104]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[105]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[106]  Xin Yao,et al.  An improved Two Archive Algorithm for Many-Objective optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[107]  Kiyoshi Tanaka,et al.  A Study on Large Population MOEA Using Adaptive ε-Box Dominance and Neighborhood Recombination for Many-Objective Optimization , 2012, LION.

[108]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[109]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[110]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..