High‐Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis
暂无分享,去创建一个
[1] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[2] Gene H. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[3] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[4] Ji Zhu,et al. L1-Norm Quantile Regression , 2008 .
[5] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[6] Decision Systems.,et al. Coordinate ascent for maximizing nondifferentiable concave functions , 1988 .
[7] Arnoldo Frigessi,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm305 Gene expression Predicting survival from microarray data—a comparative study , 2022 .
[8] R. Koenker. Quantile Regression: Name Index , 2005 .
[9] D. Ruppert,et al. Transformation and Weighting in Regression , 1988 .
[10] George E. P. Box,et al. Correcting Inhomogeneity of Variance with Power Transformation Weighting , 1974 .
[11] Rachel B. Brem,et al. The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[12] T. Breurch,et al. A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .
[13] R. Tibshirani,et al. On the “degrees of freedom” of the lasso , 2007, 0712.0881.
[14] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[15] S. Weisberg,et al. Diagnostics for heteroscedasticity in regression , 1983 .
[16] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[17] David Ruppert,et al. Robust Estimation in Heteroscedastic Linear Models. , 1982 .
[18] David A. Drubin,et al. Learning a Prior on Regulatory Potential from eQTL Data , 2009, PLoS genetics.
[19] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[20] Michael D. Gordon,et al. Regularized Least Absolute Deviations Regression and an Efficient Algorithm for Parameter Tuning , 2006, Sixth International Conference on Data Mining (ICDM'06).
[21] William S. Cleveland,et al. Visualizing Data , 1993 .
[22] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[23] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .
[24] Trevor J. Hastie,et al. Genome-wide association analysis by lasso penalized logistic regression , 2009, Bioinform..
[25] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[26] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[27] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[28] Jinfeng Xu,et al. Simultaneous estimation and variable selection in median regression using Lasso-type penalty , 2010, Annals of the Institute of Statistical Mathematics.
[29] David Ruppert,et al. The Effect of Estimating Weights in Weighted Least Squares , 1988 .
[30] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[31] Yiyuan She,et al. Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.
[32] P. Tseng. Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .
[33] Yufeng Liu,et al. VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .
[34] Ker-Chau Li,et al. A system for enhancing genome-wide coexpression dynamics study. , 2004, Proceedings of the National Academy of Sciences of the United States of America.