‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example

A broad spectrum of events that come under the category of green tide are recognized world-wide as a response to elevated levels of seawater nutrients in coastal areas. Green tides involve a wide diversity of sites, macroalgal species, consequences, and possible causes. Here we review the effect of natural and man-induced environmental fluctuations on the frequency and apparent spread of green tides. This article highlights the need for interdisciplinary research aimed at shedding light on the basic mechanisms governing the occurrence and succession of green algae in coastal seas. This will result in more effective management and mitigation of the effects of green tides, thus safeguarding the intrinsic and commercial value of coastal marine ecosystems.

[1]  J. Pönni,et al.  Eutrophication and Recreational Fishing on the Finnish Coast of the Gulf of Finland: A Mail Survey , 2000 .

[2]  I. Jenkinson,et al.  Harmful algal blooms , 1993, The Lancet.

[3]  Demao Li,et al.  Comparative Studies of the Pyrolytic and Kinetic Characteristics of Maize Straw and the Seaweed Ulva pertusa , 2010, PloS one.

[4]  Olivier De Clerck,et al.  Research note: Identity of the Qingdao algal bloom , 2009 .

[5]  M. Pedersen,et al.  Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake , 1997 .

[6]  A. Carballeira,et al.  Nitrogen and phosphorus in Ulva sp. in the Galician Rias Bajas (northwest Spain): Seasonal fluctuations and influence on growth , 1999 .

[7]  A. Ménesguen,et al.  Nitrogen loadings and macroalgal (Ulva sp.) Mass Accumulation in Brittany (France) , 1995 .

[8]  P. Morand,et al.  Macroalgal Population and Sustainability , 2005 .

[9]  B. Yan,et al.  Reproduction diversity of Enteromorpha prolifera. , 2008, Journal of integrative plant biology.

[10]  Yunyan Deng,et al.  The possibility analysis of habitats, origin and reappearance of bloom green alga (Enteromorpha prolifera) on inshore of western Yellow Sea , 2009 .

[11]  J.,et al.  Coastal Eutrophication : Causes , Consequences and Perspectives in the Archipelago Areas of the Northern Baltic Sea , 2009 .

[12]  Rebecca L. Taylor,et al.  Preliminary Studies on the Growth of Selected ‘Green Tide’ Algae in Laboratory Culture: Effects of Irradiance, Temperature, Salinity and Nutrients on Growth Rate , 2001 .

[13]  L. Pihl,et al.  Distribution and growth dynamics of ephemeral macroalgae in shallow bays on the Swedish west coast , 1996 .

[14]  P. Monteiro,et al.  The effect of localised eutrophication on competition between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria verrucosa (Gracilariaceae, Rhodophyta) , 1996, Hydrobiologia.

[15]  A. Marcomini,et al.  Annual variations of nutrients in the Lagoon of Venice , 1988 .

[16]  X. Briand,et al.  Excessive Growth of Macroalgae: A Symptom of Environmental Disturbance , 1996 .

[17]  T. Blackburn,et al.  Nutrient fluxes and growth of Cladophora sericea in a shallow Danish bay , 1993 .

[18]  Giampaolo Di Silvio,et al.  Control of macroalgae blooms in the Lagoon of Venice , 1996 .

[19]  E. Malta,et al.  Quindao algal bloom culprit identified , 2008 .

[20]  M. Guiry,et al.  Seaweed resources in Europe: uses and potential , 1991 .

[21]  Qianguo Xing,et al.  World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. , 2009, Marine pollution bulletin.

[22]  R. L. Fletcher The British Isles , 1996 .

[23]  Peggy Fang,et al.  Nitrogen vs. phosphorus limitation of algal biomass in shallow coastal lagoons , 1993 .

[24]  D. Raffaelli,et al.  Interactions Between the Amphipod Corophium Volutator and Macroalgal Mats on Estuarine Mudflats , 1991, Journal of the Marine Biological Association of the United Kingdom.

[25]  C. Bondavalli,et al.  Growth of the seaweed Ulva rigida C. Agardh in relation to biomass densities, internal nutrient pools and external nutrient supply in the Sacca di Goro lagoon (Northern Italy) , 1996, Hydrobiologia.

[26]  D. Raffaelli Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland , 2000, Helgoland Marine Research.

[27]  W. Schramm,et al.  Seaweeds for waste water treatment and recycling of nutrients. , 1991 .

[28]  Philippe Morand,et al.  Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices , 1999, Journal of Applied Phycology.

[29]  The growth of macroalgal mats on the Ythan Estuary, with respect to their effects on invertebrate abundance , 1987 .

[30]  Antonio Marcomini,et al.  Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice , 1992 .

[31]  C. Schneider,et al.  The life history and morphology of free-living Pilayella littoralis (L.) Kjellm. (Ectocarpaceae, Ectocarpales) in Nahant Bay, Massachusetts , 1982 .

[32]  R. Virnstein,et al.  Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida , 1985 .

[33]  Song Sun,et al.  Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. , 2010, Marine environmental research.

[34]  M. Stanhope,et al.  Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. , 2002, American journal of botany.

[35]  C. Den Hartog,et al.  Suffocation of a littoral Zostera bed by Enteromorpha radiata , 1994 .

[36]  Philippe Morand,et al.  Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation , 1997, Journal of Applied Phycology.

[37]  Liang Zong,et al.  A Preliminary Study of the Enteromorpha prolifera Drift Gathering Causing the Green Tide Phenomenon , 2008 .

[38]  J. Hauxwell,et al.  Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences , 1997 .

[39]  China is on the track tackling Enteromorpha spp forming green tide , 2008 .

[40]  E. Bonsdorff,et al.  Drifting algal mats as an alternative habitat for benthic invertebrates: Species specific responses to a transient resource. , 2000, Journal of experimental marine biology and ecology.

[41]  S. Qin,et al.  Molecular phylogenetic analysis of attached Ulvaceae species and free-floating Enteromorpha from Qingdao coasts in 2007 , 2008 .

[42]  Mao Yu-ze Morphological characteristics and molecular phylogenetic analysis of green tide Enteromorpha sp. occurred in the Yellow Sea , 2008 .

[43]  H. Lotze,et al.  Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. , 1999, Oecologia.

[44]  Gang Fu,et al.  Effect of temperature and irradiance on the growth and reproduction of Enteromorpha prolifera J. Ag. (Chlorophycophyta, Chlorophyceae) , 2008 .

[45]  Peter Fearns,et al.  Recurrence of the world's largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. , 2010, Marine pollution bulletin.

[46]  M. Pedersen Nitrogen limitation of photosynthesis and growth: Comparison across aquatic plant communities in a Danish Estuary (Roskilde Fjord) , 1995 .

[47]  S. Qin,et al.  Molecular analysis of green-tide-forming macroalgae in the Yellow Sea. , 2010 .

[48]  Song Sun,et al.  Emerging challenges: Massive green algae blooms in the Yellow Sea , 2008 .

[49]  Impact of pollution on benthic marine algae in the Northern Adriatic , 1993 .

[50]  N. Ye,et al.  Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China , 2010, Journal of Applied Phycology.

[51]  P. Morand,et al.  Green tides on the Brittany coasts , 2006, 2006 IEEE US/EU Baltic International Symposium.

[52]  P. Qian,et al.  Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata , 2004 .

[53]  Jinsheng Zhao,et al.  Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China , 2010 .

[54]  O. Giere,et al.  Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments , 1996 .

[55]  Fernandes,et al.  Effects of macroalgal mats on intertidal sandflats: an experimental study. , 2000, Journal of experimental marine biology and ecology.

[56]  R. L. Fletcher The Occurrence of “Green Tides”— a Review , 1996 .

[57]  Etude de la prolifération des algues vertes dans le bassin d'Arcachon , 1994 .

[58]  T. Nelson,et al.  Seasonal and Spatial Patterns of "Green Tides" (Ulvoid Algal Blooms) and Related Water Quality Parameters in the Coastal Waters of Washington State, USA , 2003 .

[59]  P. Lavery,et al.  Changes in the biomass and species composition of macroalgae in a eutrophic estuary , 1991 .

[60]  P. Morand,et al.  Coastal eutrophication and excessive growth of macroalgae. , 2004 .

[61]  Assessment of nutrient availability and limitation using macroalgae , 1994 .

[62]  Guangce Wang,et al.  A Strategy for the Proliferation of Ulva prolifera, Main Causative Species of Green Tides, with Formation of Sporangia by Fragmentation , 2010, PloS one.

[63]  Donald M. Anderson,et al.  Harmful algal blooms , 2018, General Information Product.

[64]  Paul C. Silva,et al.  Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera , 2003 .

[65]  D. Raffaelli,et al.  Long-term changes in nutrients, weed mats and shorebirds in an estuarine system , 1989 .

[66]  P. H. Nienhuis,et al.  Marine Benthic Vegetation , 1996, Ecological Studies.

[67]  D. Raffaelli,et al.  Ecological impact of green macroalgal blooms , 1998 .

[68]  Investigation of a eutrophic tidal basin: part 2nutrients and environmental aspects , 1985 .

[69]  Roger H. Charlier,et al.  Anaerobic Digestion of Ulva sp. 3. Liquefaction Juices Extraction by Pressing and a Technico-Economic Budget , 2006, Journal of Applied Phycology.

[70]  J. Foden,et al.  The monitoring of opportunistic macroalgal blooms for the water framework directive. , 2007, Marine pollution bulletin.