Quantized thermal transport across contacts of rough surfaces.

Heat transport across interfaces is often discussed in terms of the transmission probability of the heat-carrying phonons through the contact zone. Although interface roughness influences the true contact area and affects phonon scattering within the contact zone, its effect on nanoscale heat transport remains poorly understood. Here, we report experimental data on the pressure dependence of thermal transport across polished nanoscale contacts. The data can be quantitatively explained by a model of thermal conductance across interfaces that incorporates the effect of nanoscale roughness through the quantized thermal conductance across individual atomic-scale contacts within the contact zone.

[1]  R. Pohl,et al.  Thermal Boundary Resistance from 0.5–300K , 1986 .

[2]  R. Venkatesh,et al.  Thermal resistance of metal nanowire junctions in the ballistic regime , 2011 .

[3]  Ute Drechsler,et al.  Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. , 2010, Nature nanotechnology.

[4]  A. Balandin,et al.  Thermal conductivity of ultrathin tetrahedral amorphous carbon films , 2008 .

[5]  Shengfeng Cheng,et al.  Defining Contact at the Atomic Scale , 2010, 1004.1202.

[6]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  Ravi Prasher,et al.  Acoustic mismatch model for thermal contact resistance of van der Waals contacts , 2009 .

[8]  D. Kechrakos The role of interface disorder in the thermal boundary conductivity between two crystals , 1991 .

[9]  B. Persson Elastoplastic contact between randomly rough surfaces. , 2001, Physical review letters.

[10]  D. Srivastava,et al.  Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance. , 2008, The Journal of chemical physics.

[11]  Maynard,et al.  Thermal conductance and giant fluctuations in one-dimensional disordered systems. , 1985, Physical review. B, Condensed matter.

[12]  B. Gotsmann,et al.  Atomistic wear in a single asperity sliding contact. , 2008, Physical review letters.

[13]  Judith A. Harrison,et al.  Atomic contributions to friction and load for tip-self-assembled monolayers interactions , 2008 .

[14]  B N J Persson,et al.  Phononic heat transfer across an interface: thermal boundary resistance , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.

[16]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[17]  E. Gmelin,et al.  REVIEW ARTICLE: Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures , 1999 .

[18]  Jean-Jacques Greffet,et al.  Heat transfer between a nano-tip and a surface , 2006 .

[19]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[20]  L. Zhigilei,et al.  Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations , 2007 .

[21]  B. Gotsmann,et al.  High resolution vacuum scanning thermal microscopy of HfO2 and SiO2 , 2008 .

[22]  Marina Ruths,et al.  Frictional Forces and Amontons' Law: From the Molecular to the Macroscopic Scale , 2004 .

[23]  Yifei Mo,et al.  Roughness picture of friction in dry nanoscale contacts , 2010 .

[24]  B. Luan,et al.  The breakdown of continuum models for mechanical contacts , 2005, Nature.

[25]  M. Geller,et al.  Thermal transport through a mesoscopic weak link , 2001, cond-mat/0101045.

[26]  D. Tallant,et al.  Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond , 1997 .

[27]  B. Bhushan,et al.  Introduction to Tribology , 2002 .

[28]  Andreas Stemmer,et al.  Quantitative thermometry of nanoscale hot spots. , 2012, Nano letters.

[29]  Eric Pop,et al.  Pressure tuning of the thermal conductance of weak interfaces , 2011 .

[30]  B. Lorenz,et al.  Heat transfer between elastic solids with randomly rough surfaces , 2009, The European physical journal. E, Soft matter.

[31]  John B. Pendry,et al.  Quantum limits to the flow of information and entropy , 1983 .

[32]  L. Dzhavadov,et al.  Thermal conductivity and heat capacity of amorphous SiO2: pressure and volume dependence , 1992 .

[33]  G. Backstrom,et al.  The thermal conductivity and heat capacity of single-crystal Si under hydrostatic pressure , 1988 .

[34]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[35]  R. Carpick,et al.  Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  U. Schwarz,et al.  A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. , 2003, Journal of colloid and interface science.

[37]  T. Friedmann,et al.  Thermal Stability and Rehybridization of Carbon Bonding in Tetrahedral Amorphous Carbon , 2010 .

[38]  M. Salmeron,et al.  Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. , 1997, Chemical reviews.

[39]  H. Okumura,et al.  Nonequilibrium molecular dynamics simulations of a bubble. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  John Robertson,et al.  The Ultrasmoothness of Diamond-like Carbon Surfaces , 2005, Science.

[41]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[42]  D. Rowe Thermoelectrics Handbook , 2005 .