The Discovery of Stromatolites Developing at 3570 m above Sea Level in a High-Altitude Volcanic Lake Socompa, Argentinean Andes

We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20–24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth.

[1]  Jörg Peplies,et al.  Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea , 2012, PloS one.

[2]  S. K. Schmidt,et al.  The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region , 2012 .

[3]  C. Pepe-Ranney,et al.  Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. , 2012, Environmental microbiology.

[4]  R. Wing,et al.  Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile , 2012, Extremophiles.

[5]  C. Pepe-Ranney,et al.  Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation , 2011, Geobiology.

[6]  Tim Urich,et al.  Exploring the composition and diversity of microbial communities at the Jan Mayen hydrothermal vent field using RNA and DNA. , 2011, FEMS microbiology ecology.

[7]  G. C. Dı́az,et al.  Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). , 2011, Environmental microbiology.

[8]  M. Ellegaard,et al.  Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness , 2011, Nature communications.

[9]  G. Lavik,et al.  Diatoms respire nitrate to survive dark and anoxic conditions , 2011, Proceedings of the National Academy of Sciences.

[10]  J. Elser,et al.  The Cuatro Ciénegas Basin in Coahuila, Mexico: an astrobiological Precambrian Park. , 2011, Astrobiology.

[11]  P. Qian,et al.  Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing , 2011, The ISME Journal.

[12]  Y. Hua,et al.  Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. , 2010, Trends in microbiology.

[13]  T. Yao,et al.  Community structures of ammonia‐oxidising archaea and bacteria in high‐altitude lakes on the Tibetan Plateau , 2010 .

[14]  J. Imhoff,et al.  Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. , 2010, FEMS microbiology ecology.

[15]  J. Antón,et al.  Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. , 2010, Systematic and applied microbiology.

[16]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[17]  David S. Wettergreen,et al.  Novel microbial diversity retrieved by autonomous robotic exploration of the world's deepest vertical phreatic sinkhole. , 2010, Astrobiology.

[18]  B. Jørgensen,et al.  Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem , 2010, The ISME Journal.

[19]  A. Decho Overview of biopolymer-induced mineralization: What goes on in biofilms? , 2010 .

[20]  R. Reid,et al.  Processes of carbonate precipitation in modern microbial mats , 2009 .

[21]  N. Pace,et al.  Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. , 2009, Environmental microbiology.

[22]  Amy E. Miller,et al.  Microbial activity and diversity during extreme freeze–thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú , 2009, Extremophiles.

[23]  J. Dib,et al.  Extremophile Culture Collection from Andean Lakes: Extreme Pristine Environments that Host a Wide Diversity of Microorganisms with Tolerance to UV Radiation , 2009, Microbial Ecology.

[24]  J. Imhoff,et al.  Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile , 2009 .

[25]  R. Reid,et al.  Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas , 2009, The ISME Journal.

[26]  A. Decho,et al.  Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay , 2009, The ISME Journal.

[27]  Paul Stoodley,et al.  Modular Spectral Imaging System for Discrimination of Pigments in Cells and Microbial Communities , 2008, Applied and Environmental Microbiology.

[28]  S. Reed,et al.  Fumarole-Supported Islands of Biodiversity within a Hyperarid, High-Elevation Landscape on Socompa Volcano, Puna de Atacama, Andes , 2008, Applied and Environmental Microbiology.

[29]  J. A. Aas,et al.  Phylogenetic diversity and temporal variation in the Spirochaeta populations from two Mediterranean microbial mats. , 2008, International microbiology : the official journal of the Spanish Society for Microbiology.

[30]  A. Kano,et al.  Microbial processes forming daily lamination in a stromatolitic travertine , 2008 .

[31]  J. Imhoff,et al.  Comparative in silico analysis of PCR primers suited for diagnostics and cloning of ammonia monooxygenase genes from ammonia-oxidizing bacteria. , 2008, FEMS microbiology ecology.

[32]  Christian Lott,et al.  In situ applications of a new diver-operated motorized microsensor profiler. , 2007, Environmental science & technology.

[33]  B. Jørgensen,et al.  Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain. , 2007, Environmental microbiology.

[34]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[35]  R. Knight,et al.  Global patterns in bacterial diversity , 2007, Proceedings of the National Academy of Sciences.

[36]  V. Souza,et al.  Nitrogen Fixation in Microbial Mat and Stromatolite Communities from Cuatro Cienegas, Mexico , 2007, Microbial Ecology.

[37]  R L McKenzie,et al.  Changes in biologically-active ultraviolet radiation reaching the Earth’s surface , 2007, Journal of photochemistry and photobiology. B, Biology.

[38]  K. Konstantinidis,et al.  The bacterial species definition in the genomic era , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  Lily Shiue,et al.  Application of a nifH oligonucleotide microarray for profiling diversity of N2-fixing microorganisms in marine microbial mats. , 2006, Environmental microbiology.

[40]  R. Piacentini,et al.  Ultraviolet climatology over Argentina , 2006 .

[41]  J. William Schopf,et al.  Fossil evidence of Archaean life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Abigail C. Allwood,et al.  Stromatolite reef from the Early Archaean era of Australia , 2006, Nature.

[43]  Scott R. Miller,et al.  Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat , 2006, Applied and Environmental Microbiology.

[44]  Rodolfo Dirzo,et al.  An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Jones,et al.  Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand , 2005 .

[46]  J. Beman,et al.  Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Visscher,et al.  Microbial lithification in marine stromatolites and hypersaline mats. , 2005, Trends in microbiology.

[48]  N. Pace,et al.  Composition and Structure of Microbial Communities from Stromatolites of Hamelin Pool in Shark Bay, Western Australia , 2005, Applied and Environmental Microbiology.

[49]  P. Visscher,et al.  Microbial mats as bioreactors: populations, processes, and products , 2005 .

[50]  J. Handelsman,et al.  Introducing DOTUR, a Computer Program for Defining Operational Taxonomic Units and Estimating Species Richness , 2005, Applied and Environmental Microbiology.

[51]  Pedro A. Galleguillos,et al.  Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. , 2004, FEMS microbiology ecology.

[52]  J. Zehr,et al.  Comparison of diazotroph community structure in Lyngbya sp. and Microcoleus chthonoplastes dominated microbial mats from Guerrero Negro, Baja, Mexico. , 2004, FEMS microbiology ecology.

[53]  Jason Raymond,et al.  The natural history of nitrogen fixation. , 2004, Molecular biology and evolution.

[54]  Adrian J. Hartley,et al.  The central Andean west‐slope rainshadow and its potential contribution to the origin of hyper‐aridity in the Atacama Desert , 2003 .

[55]  Alexander Cede,et al.  Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina) , 2003 .

[56]  V. Emelyanov Mitochondrial connection to the origin of the eukaryotic cell. , 2003, European journal of biochemistry.

[57]  D. Bhaya,et al.  Multiple Light Inputs Control Phototaxis in Synechocystis sp. Strain PCC6803 , 2003, Journal of bacteriology.

[58]  D. Capone,et al.  Nitrogen-Fixing Phylotypes of Chesapeake Bay and Neuse River Estuary Sediments , 2002, Microbial Ecology.

[59]  H. Paerl,et al.  Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat , 2002 .

[60]  Kjell Nordberg,et al.  Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord , 2002 .

[61]  J. Amesz,et al.  Energy transfer and charge separation in the purple non-sulfur bacterium Roseospirillum parvum. , 2000, Biochimica et biophysica acta.

[62]  R. Castenholz,et al.  Effects of solar UV and visible irradiance on photosynthesis and vertical migration of Oscillatoria sp. (Cyanobacteria) in an Antarctic microbial mat , 1999 .

[63]  L Bogorad,et al.  Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803 , 1999, Photochemistry and photobiology.

[64]  R. Edmonds,et al.  Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples , 1999 .

[65]  M. Kühl,et al.  A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment , 1998 .

[66]  K. Sand‐Jensen,et al.  Light attenuation and photosynthesis of aquatic plant communities , 1998 .

[67]  W. Liesack,et al.  The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations , 1997, Applied and environmental microbiology.

[68]  D. de Beer,et al.  A fast‐responding CO2 microelectrode for profiling sediments, microbial mats, and biofilms , 1997 .

[69]  L. Lemee,et al.  Deinoxanthin: A new carotenoid isolated from Deinococcus radiodurans , 1997 .

[70]  R. Steneck,et al.  Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common , 1995 .

[71]  S. Bozzo,et al.  Variations in UV radiation in Chile. , 1995, Journal of photochemistry and photobiology. B, Biology.

[72]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[73]  B. Jørgensen,et al.  Microalgal photosynthesis and spectral scalar irradiance in coastal marine sediments of Limfjorden, Denmark , 1992 .

[74]  T. Matsunaga,et al.  On-line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. , 1991, Journal of biotechnology.

[75]  S. Halloy Islands of Life at 6000 M Altitude: The Environment of the Highest Autotrophic Communities on Earth (Socompa Volcano, Andes) , 1991, Arctic and Alpine Research.

[76]  J. Zehr,et al.  Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii , 1989, Applied and environmental microbiology.

[77]  R. J. Porra,et al.  Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy , 1989 .

[78]  R. Burne,et al.  Microbialites; organosedimentary deposits of benthic microbial communities , 1987 .

[79]  M. Walter,et al.  Links between the rise of the metazoa and the decline of stromatolites , 1985 .

[80]  Li Yuan-hui,et al.  Diffusion of ions in sea water and in deep-sea sediments , 1974 .

[81]  T. D. Brock,et al.  Siliceous Algal and Bacterial Stromatolites in Hot Spring and Geyser Effluents of Yellowstone National Park , 1972, Science.

[82]  S M Awramik,et al.  Precambrian Columnar Stromatolite Diversity: Reflection of Metazoan Appearance , 1971, Science.

[83]  P. Garrett Phanerozoic Stromatolites: Noncompetitive Ecologic Restriction by Grazing and Burrowing Animals , 1970, Science.

[84]  R. Stanier,et al.  The chlorophylls of green bacteria , 1960 .

[85]  J. Foster,et al.  Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. , 2012, Environmental microbiology.

[86]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[87]  M. E. Farías,et al.  Modern Stromatolite Ecosystems at Alkaline and Hypersaline High-Altitude Lakes in the Argentinean Puna , 2011 .

[88]  J. Foster,et al.  Microbial Diversity in Modern Stromatolites , 2011 .

[89]  Forest Rohwer,et al.  Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. , 2009, Environmental microbiology.

[90]  A. Kano,et al.  Depositional processes of travertine developed at Shionoha hot spring, Nara Prefecture, Japan , 2005 .

[91]  D. Futuyma On Darwin`s Shoulders , 2005 .

[92]  G. Kowalchuk,et al.  Ammonia-oxidizing bacteria: a model for molecular microbial ecology. , 2001, Annual review of microbiology.

[93]  M. Pedley Ambient Temperature Freshwater Microbial Tufas , 2000 .

[94]  B. Lang,et al.  Mitochondrial Evolution , 1999 .

[95]  F. Garcia-Pichel,et al.  UV B-Induced Vertical Migrations of Cyanobacteria in a Microbial Mat. , 1995, Applied and environmental microbiology.

[96]  J. Kasting Box models for the evolution of atmospheric oxygen: an update. , 1991, Global and planetary change.

[97]  B. Jørgensen,et al.  Microelectrodes: Their Use in Microbial Ecology , 1986 .

[98]  Mar Ecol Prog,et al.  Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton , 2022 .