Title Cholangiopathy with Respect to Biliary Innate Immunity

*KURAに登録されているコンテンツの利用については,著作権法に規定されている私的使用や引用などの範囲内で行ってください。 *著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には,著作権者の許諾を得てください。ただし,著作権者 から著作権等管理事業者(学術著作権協会,日本著作出版権管理システムなど)に権利委託されているコンテンツの利用手続については ,各著作権等管理事業者に確認してください。 Title Cholangiopathy with Respect to Biliary Innate Immunity Author(s) Harada, Kenichi; Nakanuma, Yasuni Citation International Journal of Hepatology, 2012: 793569 Issue Date 2012 Type Journal Article Text version publisher URL http://hdl.handle.net/2297/31477 Right

[1]  K. Akashi,et al.  Interaction between Toll‐like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis , 2011, Hepatology.

[2]  Maylee Hsu,et al.  Significance of periductal Langerhans cells and biliary epithelial cell‐derived macrophage inflammatory protein‐3α in the pathogenesis of primary biliary cirrhosis , 2011, Liver international : official journal of the International Association for the Study of the Liver.

[3]  K. Isse,et al.  Periductal interleukin‐17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis , 2009, Clinical and experimental immunology.

[4]  Jun Liu,et al.  MicroRNA-98 and let-7 Confer Cholangiocyte Expression of Cytokine-Inducible Src Homology 2-Containing Protein in Response to Microbial Challenge12 , 2009, The Journal of Immunology.

[5]  K. Tsuneyama,et al.  Hepatic IL-17 responses in human and murine primary biliary cirrhosis. , 2009, Journal of autoimmunity.

[6]  Yasunori Sato,et al.  Cholangiocytes with mesenchymal features contribute to progressive hepatic fibrosis of the polycystic kidney rat. , 2007, The American journal of pathology.

[7]  K. Isse,et al.  Involvement of Escherichia coli in pathogenesis of xanthogranulomatous cholecystitis with scavenger receptor class A and CXCL16–CXCR6 interaction , 2007, Pathology international.

[8]  K. Isse,et al.  Innate immune response to double‐stranded RNA in biliary epithelial cells is associated with the pathogenesis of biliary atresia , 2007, Hepatology.

[9]  M. Harada,et al.  Autoreactive T‐cell responses in primary biliary cirrhosis are proinflammatory whereas those of controls are regulatory , 2007, Gastroenterology.

[10]  F. Sallusto,et al.  Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17–producing human T helper cells , 2007, Nature Immunology.

[11]  N. LaRusso,et al.  Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. , 2007, American journal of physiology. Gastrointestinal and liver physiology.

[12]  K. Isse,et al.  IL‐8 expression by biliary epithelial cells is associated with neutrophilic infiltration and reactive bile ductules , 2007, Liver international : official journal of the International Association for the Study of the Liver.

[13]  A. Bergquist,et al.  Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. , 2007, Gastroenterology.

[14]  K. Isse,et al.  Endotoxin tolerance in human intrahepatic biliary epithelial cells is induced by upregulation of IRAK‐M , 2006, Liver international : official journal of the International Association for the Study of the Liver.

[15]  A. Bowie,et al.  The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling , 2006, Nature Immunology.

[16]  K. Migita,et al.  Human intrahepatic biliary epithelial cells function in innate immunity by producing IL‐6 and IL‐8 via the TLR4‐NF‐κB and ‐MAPK signaling pathways , 2006, Liver international : official journal of the International Association for the Study of the Liver.

[17]  M. Chou,et al.  Implication of innate immunity in the pathogenesis of biliary atresia. , 2006, Chang Gung medical journal.

[18]  K. Isse,et al.  Interferon γ accelerates NF-κB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction , 2006, Journal of Clinical Pathology.

[19]  N. LaRusso,et al.  Multiple TLRs Are Expressed in Human Cholangiocytes and Mediate Host Epithelial Defense Responses to Cryptosporidium parvum via Activation of NF-κB1 , 2005, The Journal of Immunology.

[20]  R. Coppel,et al.  Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis , 2005, Hepatology.

[21]  Masahiro Ito,et al.  Enhanced expression of type I interferon and toll-like receptor-3 in primary biliary cirrhosis , 2005, Laboratory Investigation.

[22]  K. Isse,et al.  Th1 cytokine–induced downregulation of PPARγ in human biliary cells relates to cholangitis in primary biliary cirrhosis , 2005, Hepatology.

[23]  K. Miyake,et al.  Interaction of Soluble Form of Recombinant Extracellular TLR4 Domain with MD-2 Enables Lipopolysaccharide Binding and Attenuates TLR4-Mediated Signaling1 , 2004, The Journal of Immunology.

[24]  S. Akira,et al.  Toll-like receptors in innate immunity. , 2004, International immunology.

[25]  T. Hirayama,et al.  Peptide antibiotic human beta‐defensin‐1 and ‐2 contribute to antimicrobial defense of the intrahepatic biliary tree , 2004, Hepatology.

[26]  J. Peters,et al.  Peroxisome proliferator‐activated receptor α protects against alcohol‐induced liver damage , 2004 .

[27]  Shizuo Akira,et al.  Toll-like receptor signalling , 2004, Nature Reviews Immunology.

[28]  D. Philpott,et al.  Nods and 'intracellular' innate immunity. , 2004, Comptes rendus biologies.

[29]  D. Podolsky,et al.  Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. , 2004, Gastroenterology.

[30]  Jean Paul Thiery,et al.  Epithelial-mesenchymal transitions in development and pathologies. , 2003, Current opinion in cell biology.

[31]  K. Isse,et al.  Lipopolysaccharide Activates Nuclear Factor-KappaB through Toll-Like Receptors and Related Molecules in Cultured Biliary Epithelial Cells , 2003, Laboratory Investigation.

[32]  R. Coppel,et al.  Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic‐metabolizing bacterium , 2003, Hepatology.

[33]  A. Ljungh,et al.  Increased prevalence of seropositivity for non-gastric Helicobacter species in patients with autoimmune liver disease. , 2003, Journal of medical microbiology.

[34]  M. Hornef,et al.  Intracellular Recognition of Lipopolysaccharide by Toll-like Receptor 4 in Intestinal Epithelial Cells , 2003, The Journal of experimental medicine.

[35]  J. Neuberger,et al.  Does a betaretrovirus infection trigger primary biliary cirrhosis? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Matsushita,et al.  Molecular mimicry of mitochondrial and nuclear autoantigens in primary biliary cirrhosis. , 2003, Gastroenterology.

[37]  P. Szavay,et al.  The role of reovirus type 3 infection in an established murine model for biliary atresia. , 2002, European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie.

[38]  M. Abreu,et al.  TLR4 and MD-2 Expression Is Regulated by Immune-mediated Signals in Human Intestinal Epithelial Cells* , 2002, The Journal of Biological Chemistry.

[39]  Sankar Ghosh,et al.  Negative Regulation of Toll-like Receptor-mediated Signaling by Tollip* , 2002, The Journal of Biological Chemistry.

[40]  H. Sasano,et al.  E‐cadherin, α‐catenin and β‐catenin in biliary atresia: Correlation with apoptosis and cell cycle , 2001 .

[41]  H. Hsu,et al.  Cytomegalovirus infection and proinflammatory cytokine activation modulate the surface immune determinant expression and immunogenicity of cultured murine extrahepatic bile duct epithelial cells , 2001, Clinical and experimental immunology.

[42]  M. Abreu,et al.  Decreased Expression of Toll-Like Receptor-4 and MD-2 Correlates with Intestinal Epithelial Cell Protection Against Dysregulated Proinflammatory Gene Expression in Response to Bacterial Lipopolysaccharide1 , 2001, The Journal of Immunology.

[43]  K. Tsuneyama,et al.  Molecular identification of bacterial 16S ribosomal RNA gene in liver tissue of primary biliary cirrhosis: Is Propionibacterium acnes involved in granuloma formation? , 2001, Hepatology.

[44]  K. Tsuneyama,et al.  Frequent molecular identification of Campylobacter but not Helicobacter genus in bile and biliary epithelium in hepatolithiasis , 2001, The Journal of pathology.

[45]  E. Gold,et al.  Risk factors for primary biliary cirrhosis in a cohort of patients from the United States , 2001, Hepatology.

[46]  H. Hayashi,et al.  Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. , 2000, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[47]  Y. Nakanuma,et al.  Distribution of apoptotic cells and expression of apoptosis‐related proteins along the intrahepatic biliary tree in normal and non‐biliary diseased liver , 2000, Histopathology.

[48]  S. Sheen-Chen,et al.  Bacteriology and antimicrobial choice in hepatolithiasis. , 2000, American journal of infection control.

[49]  K. Tsuneyama,et al.  Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis. , 2000, Journal of hepatology.

[50]  M. Gershwin,et al.  Mimicry peptides of human PDC‐E2 163‐176 peptide, the immunodominant T‐cell epitope of primary biliary cirrhosis , 2000, Hepatology.

[51]  J. Taneera,et al.  Identification of Helicobacter pylori and OtherHelicobacter Species by PCR, Hybridization, and Partial DNA Sequencing in Human Liver Samples from Patients with Primary Sclerosing Cholangitis or Primary Biliary Cirrhosis , 2000, Journal of Clinical Microbiology.

[52]  K. Anderson,et al.  Toll signaling pathways in the innate immune response. , 2000, Current opinion in immunology.

[53]  I. Mackay,et al.  The immunobiology of bile and biliary epithelium , 1999, Hepatology.

[54]  H. Sasano,et al.  Apoptosis and cell proliferation in biliary atresia , 1998, The Journal of pathology.

[55]  V. Bafna,et al.  Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. , 1998, The Journal of clinical investigation.

[56]  K. Tyler,et al.  Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts , 1998, Hepatology.

[57]  Z. Shen,et al.  Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. , 1998, Gastroenterology.

[58]  D. Adams,et al.  Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro. , 1997, Proceedings of the Association of American Physicians.

[59]  B. Markus,et al.  Expression of human leukocyte antigens class I and class II on cultured biliary epithelial cells after cytomegalovirus infection. , 1997, Tissue antigens.

[60]  R. Coppel,et al.  In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: Predominance of the Th1 subset , 1997, Hepatology.

[61]  H. Ishibashi,et al.  Hla Drb4 0101-restricted Immunodominant T Cell Autoepitope of Pyruvate Dehydrogenase Complex in Primary Biliary Cirrhosis: Evidence of Molecular Mimicry in Human Autoimmune Diseases , 1995 .

[62]  G. Michalopoulos,et al.  Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: Interleukin‐6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro , 1994, Hepatology.

[63]  P. Ogra,et al.  Group A Rotaviruses Produce Extrahepatic Biliary Obstruction in Orally Inoculated Newborn Mice , 1993, Pediatric Research.

[64]  Y. Nakanuma,et al.  Expression of vimentin in proliferating and damaged bile ductules and interlobular bile ducts in nonneoplastic hepatobiliary diseases. , 1992, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[65]  J. Costerton,et al.  Defense system in the biliary tract against bacterial infection , 1992, Digestive Diseases and Sciences.

[66]  K. Saito,et al.  Lactoferrin and lysozyme in the intrahepatic bile duct of normal livers and hepatolithiasis. An immunohistochemical study. , 1992, Journal of hepatology.

[67]  Y. Nakanuma,et al.  Secretory component and immunoglobulins in the intrahepatic biliary tree and peribiliary gland in normal livers and hepatolithiasis , 1989, Gastroenterologia Japonica.

[68]  F. Mollinedo,et al.  Is the guinea pig a full negative model to study the carotid body mediated Chronic Intermittent Hypoxia effects , 1983 .

[69]  M. Horwitz,et al.  Biliary atresia and reovirus type 3 infection. , 1982, The New England journal of medicine.

[70]  J. Kagan,et al.  The Dorsoventral Regulatory Gene Cassette spätzle / Toll / cactus Controls the Potent Antifungal Response in Drosophila Adults , 2015 .

[71]  W. Marsden I and J , 2012 .

[72]  G. Gores,et al.  Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. , 2010, Hepatology.

[73]  Ji Won Kim,et al.  Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. , 2008, Human pathology.

[74]  笹冨 くるみ Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis , 1999 .

[75]  Y. Nakanuma,et al.  Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic biliary epithelial cells: in situ and culture study. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[76]  M. Osnes,et al.  Lipopolysaccharides and beta-glucuronidase activity in choledochal bile in relation to choledocholithiasis. , 1997, Digestion.

[77]  J. Lefkowitch Bile ductular cholestasis: an ominous histopathologic sign related to sepsis and "cholangitis lenta". , 1982, Human pathology.

[78]  Y. Nakanuma,et al.  Histometric and serial section observations of the intrahepatic bile ducts in primary biliary cirrhosis. , 1979, Gastroenterology.