A nearly-optimal method to compute the truncated theta function, its derivatives, and integrals
暂无分享,去创建一个
[1] E. A. Karatsuba. Approximation of sums of oscillating summands in certain physical problems , 2004 .
[2] T. Wooley,et al. The quadratic Waring–Goldbach problem , 2004 .
[3] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[4] D. Mumford. Tata Lectures on Theta I , 1982 .
[5] Grigori Kolesnik,et al. Van der Corput's method of exponential sums , 1991 .
[6] F. Mezzadri,et al. Recent Perspectives in Random Matrix Theory and Number Theory: Frontmatter , 2005 .
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] Mourad E. H. Ismail,et al. Classical and Quantum Orthogonal Polynomials in One Variable , 2005 .
[9] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[10] M. Huxley. Area, Lattice Points, and Exponential Sums , 1996 .
[11] Arnold Schönhage,et al. Fast algorithms for multiple evaluations of the riemann zeta function , 1988 .
[12] J. Keating. Recent Perspectives in Random Matrix Theory and Number Theory , 2005 .
[13] Michael O. Rubinstein,et al. Computational methods and experiments in analytic number theory , 2004 .
[14] N. M. Korobov. Exponential Sums and their Applications , 1992 .
[15] Ghaith Ayesh Hiary,et al. Fast methods to compute the Riemann zeta function , 2007, 0711.5005.