Hofmeister series and specific interactions of charged headgroups with aqueous ions.

In this paper, we propose a Hofmeister-like ordering of charged headgroups. To this purpose we review various literature data and complete them with some new experimental and computational results on interactions of ions with alkyl sulfates and carboxylates. We further combine the proposed headgroup ordering with the law of matching water affinities in order to obtain a general description and predictions of ion-headgroup interactions. Examples from colloidal chemistry and from biological systems are provided to illustrate the power of this approach.

[1]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[2]  Gerald S. Manning,et al.  Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties , 1969 .

[3]  H. Gregor,et al.  Studies on Ion Exchange Resins. XV. Selectivity Coefficients of Methacrylic Acid Resins toward Alkali Metal Cations , 1956 .

[4]  K. D. Collins,et al.  The Hofmeister effect and the behaviour of water at interfaces , 1985, Quarterly Reviews of Biophysics.

[5]  Zhenjie He,et al.  Specific counterion effects on indicator equilibria in micellar solutions of decyl phosphate and lauryl sulfate surfactants , 1989 .

[6]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[7]  W. Kunz,et al.  Solubilisation of stearic acid by the organic base choline hydroxide , 2009 .

[8]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[9]  U. Strauss,et al.  Volume Changes as a Criterion for Site Binding of Counterions by Polyelectrolytes1 , 1965 .

[10]  Mikael Lund,et al.  Ion pairing as a possible clue for discriminating between sodium and potassium in biological and other complex environments. , 2007, The journal of physical chemistry. B.

[11]  H. Gregor,et al.  Titration of Polyacrylic Acid with Quaternary Ammonium Bases , 1954 .

[12]  A. Chialvo,et al.  Aqueous Na+Cl− pair association from liquidlike to steamlike densities along near-critical isotherms , 2003 .

[13]  A Katchalsky,et al.  The Potential of an Infinite Rod-Like Molecule and the Distribution of the Counter Ions. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Verbavatz,et al.  Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition. , 2008, Journal of colloid and interface science.

[15]  B. Ninham,et al.  The present state of affairs with Hofmeister effects , 2004 .

[16]  D. Lemordant,et al.  Counterion binding on micelles: An ultrafiltration study , 1991 .

[17]  Douglas J. Tobias,et al.  Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry , 2001 .

[18]  H. Rosano,et al.  Competition of cations at charged micelle and monolayer interfaces. , 1969, Journal of colloid and interface science.

[19]  V. Parsegian,et al.  Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Pavel Jungwirth,et al.  Specific ion effects at the air/water interface. , 2006, Chemical reviews.

[21]  Gregory G. Warr,et al.  THERMODYNAMICS OF ION EXCHANGE SELECTIVITY AT INTERFACES , 1995 .

[22]  A. Chialvo,et al.  Solvation behavior of short-chain polystyrene sulfonate in aqueous electrolyte solutions: a molecular dynamics study. , 2005, The journal of physical chemistry. B.

[23]  W. Goddard,et al.  Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate , 2004 .

[24]  B. Lindman,et al.  Nuclear magnetic resonance studies of the interaction between alkali ions and micellar aggregates , 1975 .

[25]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[26]  I. Weil Surface Concentration and the Gibbs Adsorption Law. The Effect of the Alkali Metal Cations on Surface Behavior1 , 1966 .

[27]  D. F. Evans,et al.  Counterion specificity as the determinant of surfactant aggregation , 1986 .

[28]  K. Fendler,et al.  Specific anion and cation binding to lipid membranes investigated on a solid supported membrane. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[29]  H. Deuel,et al.  Ionengleichgewichte an Kationenaustauschern verschiedener Austauschkapazität. 5. Mitteilung über Ionenaustauscher , 1956 .

[30]  H. Rosano,et al.  The determination of the apparent binding of counterions to micelles by electromotive force measurements , 1967 .

[31]  J. Israelachvili,et al.  Lipid packing and transbilayer asymmetries of mixed lipid vesicles. , 1979, Biochimica et biophysica acta.

[32]  J. Larsen,et al.  Calorimetric and counterion binding studies of the interactions between micelles and ions. The observation of lyotropic series , 1974 .

[33]  T. Narayanan,et al.  The role of counterions on the elasticity of highly charged lamellar phases: a small-angle x-ray and neutron-scattering determination. , 2005, The Journal of chemical physics.

[34]  O. Regev,et al.  CRYO-TEM AND NMR STUDIES OF SOLUTION MICROSTRUCTURES OF DOUBLE-TAILED SURFACTANT SYSTEMS : DIDODECYLDIMETHYLAMMONIUM HYDROXIDE, ACETATE, AND SULFATE , 1994 .

[35]  K. D. Collins,et al.  Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. , 2004, Methods.

[36]  H. Gregor,et al.  Potentiometric titration of polyacrylic and polymethacrylic acids with alkali metal and quaternary ammonium bases , 1957 .

[37]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[38]  K. D. Collins,et al.  Ions in water: characterizing the forces that control chemical processes and biological structure. , 2007, Biophysical chemistry.

[39]  A. Kleinzeller,et al.  Membrane transport and metabolism , 1961 .

[40]  J. Engberts,et al.  Micelle to lamellar aggregate transition of an anionic surfactant in dilute aqueous solution induced by alkali metal chloride and tetraalkylammonium chloride salts , 1995 .

[41]  Mika A. Kastenholz,et al.  Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. , 2006, The Journal of chemical physics.

[42]  B. Ninham,et al.  Specific alkali cation effects in the transition from micelles to vesicles through salt addition. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[43]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[44]  Faraday Discuss , 1985 .

[45]  H. Rosano Mechanisms of water transport through Nonaqueous liquid membranes , 1967 .

[46]  G. Warr,et al.  Selective adsorption of metal cations onto AOT and dodecyl sulfate films at the air/solution interface , 1998 .

[47]  E. Landau,et al.  The Hofmeister series: salt and solvent effects on interfacial phenomena , 1997, Quarterly Reviews of Biophysics.

[48]  Barry W. Ninham,et al.  ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister's historical papers , 2004 .

[49]  D. F. Evans,et al.  The Rideal Lecture. Vesicles and molecular forces , 1986 .

[50]  M. Claessens Size regulation and stability of charged lipid vesicles , 2003 .

[51]  B. Lindman,et al.  Alkali ion binding to aggregates of amphiphilic compounds studied by nuclear magnetic resonance chemical shifts , 1978 .

[52]  R. Robinson,et al.  Some Aspects of the Thermodynamics of Strong Electrolytes from Electromotive Force and Vapor Pressure Measurements. , 1941 .

[53]  G. Warr,et al.  Cation Selectivity at Air/Anionic Surfactant Solution Interfaces† , 2000 .

[54]  C. Kang,et al.  Self-Assembly in Systems of Didodecyldimethylammonium Surfactants: Binary and Ternary Phase Equilibria and Phase Structures with Sulphate, Hydroxide, Acetate, and Chloride Counterions , 1993 .

[55]  D. F. Evans,et al.  The curious world of hydroxide surfactants. Spontaneous vesicles and anomalous micelles , 1983 .

[56]  V. Vlachy,et al.  Thermodynamic characterization of polyanetholesulfonic acid and its alkaline salts. , 2007, The journal of physical chemistry. B.

[57]  H. Krienke,et al.  A Molecular Dynamics study of short-chain polyelectrolytes in explicit water: Toward the origin of ion-specific effects , 2008 .

[58]  Jiuqiang Li,et al.  Ion-specific swelling of poly(styrene sulfonic acid) hydrogel. , 2007, The journal of physical chemistry. B.

[59]  V. Sapunov,et al.  A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii) , 2000 .

[60]  Franz Hofmeister,et al.  Zur Lehre von der Wirkung der Salze , 1891, Archiv für experimentelle Pathologie und Pharmakologie.

[61]  J. Vondrášek,et al.  Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces , 2006, Proceedings of the National Academy of Sciences.