Phase-Induced Frequency Conversion and Doppler Effect With Time-Modulated Metasurfaces

Metasurfaces consisting of electrically thin and densely packed planar arrays of subwavelength elements enable an unprecedented control of the impinging electromagnetic fields. Spatially modulated metasurfaces can efficiently tailor the spatial distribution of these fields with great flexibility. Similarly, time-modulated metasurfaces can be successfully used to manipulate the frequency content and time variations in the impinging field. In this article, we present time-modulated reflective metasurfaces that cause a frequency shift to the impinging radiation, thus realizing an artificial Doppler effect in a nonmoving electrically thin structure. Starting from the theoretical analysis, we analytically derive the required time modulation of the surface admittance to achieve this effect and present a realistic time-varying structure, based on a properly designed and dynamically tuned high-impedance surface. It is analytically and numerically demonstrated that the field emerging from the metasurface is up-/down-converted in frequency according to the modulation profile of the metasurface. The proposed metasurface concept, enabling a frequency modulation of the electromagnetic field “on-the-fly,” may find application in telecommunication, radar, and sensing scenarios.

[1]  Anthony Grbic,et al.  Serrodyne Frequency Translation Using Time-Modulated Metasurfaces , 2019, IEEE Transactions on Antennas and Propagation.

[2]  Qiang Cheng,et al.  Breaking Reciprocity with Space‐Time‐Coding Digital Metasurfaces , 2019, Advanced materials.

[3]  Shi Jin,et al.  Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems , 2018, National science review.

[4]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[5]  C. Caloz,et al.  Simultaneous Control of the Spatial and Temporal Spectra of Light With Space-Time Varying Metasurfaces , 2018, IEEE Transactions on Antennas and Propagation.

[6]  Ahmed A. Kishk,et al.  Advanced Wave Engineering via Obliquely Illuminated Space-Time-Modulated Slab , 2019, IEEE Transactions on Antennas and Propagation.

[7]  S. Xiao,et al.  Nonlinear Holographic All-Dielectric Metasurfaces. , 2018, Nano letters.

[8]  A. Alú,et al.  Nonreciprocity in Antenna Radiation Induced by Space-Time Varying Metamaterial Cloaks , 2018, IEEE Antennas and Wireless Propagation Letters.

[9]  A. Toscano,et al.  Metasurface-based Doppler cloaks: Time-varying metasurface profile to achieve perfect frequency mixing , 2018, 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials).

[10]  Anthony Grbic,et al.  A Transparent, Time-Modulated Metasurface , 2018, 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials).

[11]  Ilya V. Shadrivov,et al.  Huygens’ Metadevices for Parametric Waves , 2018, Physical Review X.

[12]  D. Sounas,et al.  Time-varying metamaterial Doppler cloak: applications to invisibility and antennas , 2018, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[13]  D. Sievenpiper,et al.  Metasurfaces and their applications , 2018, Nanophotonics.

[14]  Sajjad Taravati,et al.  Giant Linear Nonreciprocity, Zero Reflection, and Zero Band Gap in Equilibrated Space-Time-Varying Media , 2018, Physical Review Applied.

[15]  M. Chen,et al.  Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction. , 2018, 1812.05084.

[16]  H. Mosallaei,et al.  Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering , 2018, New Journal of Physics.

[17]  Christophe Caloz,et al.  Computational Analysis of Metasurfaces , 2017, IEEE Journal on Multiscale and Multiphysics Computational Techniques.

[18]  Andrea Alù,et al.  Magnet-Less Circulators Based on Spatiotemporal Modulation of Bandstop Filters in a Delta Topology , 2017, IEEE Transactions on Microwave Theory and Techniques.

[19]  Spatio-temporal modulated Doppler cloak for antenna matching at relativistic velocity , 2017, 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials).

[20]  D. Sounas,et al.  Spatio-temporal modulated doppler cloak restores invisibility of moving cloaked objects , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[21]  Christophe Caloz,et al.  Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator , 2017, 1705.06311.

[22]  D. Sounas,et al.  Doppler cloak restores invisibility to objects in relativistic motion , 2017 .

[23]  Christophe Caloz,et al.  Nonreciprocal Nongyrotropic Magnetless Metasurface , 2016, IEEE Transactions on Antennas and Propagation.

[24]  Christophe Caloz,et al.  Optical Isolation based on Space-time Engineered Asymmetric Photonic Bandgaps , 2016, 1612.08398.

[25]  D. Sounas,et al.  Advancements in Doppler cloak technology: Manipulation of Doppler Effect and invisibility for moving objects , 2016, 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[26]  Ariel Epstein,et al.  Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection. , 2016, Physical review letters.

[27]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[28]  Jason Soric,et al.  Breaking temporal symmetries for emission and absorption , 2016, Proceedings of the National Academy of Sciences.

[29]  Christophe Caloz,et al.  Spacetime processing metasurfaces: GSTC synthesis and prospective applications , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[30]  George V. Eleftheriades,et al.  Huygens' metasurfaces via the equivalence principle: design and applications , 2016 .

[31]  S. Tcvetkova,et al.  Scanning Characteristics of Metamirror Antennas With Subwavelength Focal Distance , 2016, IEEE Transactions on Antennas and Propagation.

[32]  Dimitrios L. Sounas,et al.  Magnetless Microwave Circulators Based on Spatiotemporally Modulated Rings of Coupled Resonators , 2016, IEEE Transactions on Microwave Theory and Techniques.

[33]  Jennifer Nacht,et al.  Analytical Modeling In Applied Electromagnetics , 2016 .

[34]  George V. Eleftheriades,et al.  Reflectionless Wide-Angle Refracting Metasurfaces , 2016, IEEE Antennas and Wireless Propagation Letters.

[35]  Alessandro Toscano,et al.  Nonreciprocal Horn Antennas Using Angular Momentum-Biased Metamaterial Inclusions , 2015, IEEE Transactions on Antennas and Propagation.

[36]  C. Caloz,et al.  Space-time modulated nonreciprocal mixing, amplifying and scanning leaky-wave antenna system , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[37]  V. Shalaev,et al.  Time-Varying Metasurfaces and Lorentz Non-Reciprocity , 2015, 1507.04836.

[38]  A. Alú,et al.  Space-time gradient metasurfaces , 2015, 1506.00690.

[39]  S A Tretyakov,et al.  Functional Metamirrors Using Bianisotropic Elements , 2015 .

[40]  Andrea Alù,et al.  Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops , 2014, Nature Physics.

[41]  G. Eleftheriades,et al.  Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation , 2014, IEEE Transactions on Antennas and Propagation.

[42]  Yuanxun Ethan Wang,et al.  Nonreciprocal Components With Distributedly Modulated Capacitors , 2014, IEEE Transactions on Microwave Theory and Techniques.

[43]  Sergei A. Tretyakov,et al.  Tailoring Reflections From Thin Composite Metamirrors , 2014, IEEE Transactions on Antennas and Propagation.

[44]  M. A. Salem,et al.  Metasurface Synthesis for Time-Harmonic Waves: Exact Spectral and Spatial Methods (Invited Paper) , 2014 .

[45]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[46]  Alessandro Toscano,et al.  Dielectric-free multi-band frequency selective surface for antenna applications , 2013 .

[47]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[48]  M. Lipson,et al.  Subject Areas : Optics A Viewpoint on : Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip , 2012 .

[49]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[50]  Alessandro Toscano,et al.  Analytical Model of a Metasurface Consisting of a Regular Array of Sub-Wavelength Circular Holes in a Metal Sheet , 2011 .

[51]  Alessandro Toscano,et al.  INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS , 2011 .

[52]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[53]  K. L. Ford,et al.  Switchable Frequency Selective Surface for Reconfigurable Electromagnetic Architecture of Buildings , 2010, IEEE Transactions on Antennas and Propagation.

[54]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2008, OPTO.

[55]  Nader Engheta,et al.  Review of Theory, Fabrication, and Applications of HighImpedance Ground Planes , 2006 .

[56]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[57]  D. Sievenpiper,et al.  A tunable impedance surface performing as a reconfigurable beam steering reflector , 2002 .

[58]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[59]  Shanhui Fan,et al.  Interband transitions in photonic crystals , 1999 .

[60]  H. E. Rowe,et al.  Some General Properties of Nonlinear Elements. II. Small Signal Theory , 1958, Proceedings of the IRE.

[61]  Raymond C. Cumming,et al.  The Serrodyne Frequency Translator , 1957, Proceedings of the IRE.

[62]  H. Rowe,et al.  Some General Properties of Nonlinear Elements-Part I. General Energy Relations , 1956, Proceedings of the IRE.