Future Prospects for FEC in Fiber-Optic Communications

This paper reviews the application of forward error correction (FEC) techniques to long-haul fiber-optic communication systems. A brief tutorial on error-correcting codes and a discussion of their fundamental limits (on the additive white Gaussian noise channel and on a nonlinear fiber-optic transmission channel) is provided. To illustrate the potential for applying advanced FEC techniques that take channel nonlinearities into account, a novel faster than Nyquist style binary signaling scheme, providing significant rate improvements over a reference benchmark system, is described. To achieve higher spectral efficiencies, the judicious combination of higher order modulation schemes with FEC is discussed. Finally, several potential directions for further research in the application of advanced FEC systems to nonlinear fiber-optic channels are given.

[1]  William E. Ryan,et al.  Importance sampling for tanner trees , 2005, IEEE Transactions on Information Theory.

[2]  G. Raybon,et al.  Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems , 1999 .

[3]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[4]  G. Raybon,et al.  Pseudo-Linear Transmission of High-Speed TDM Signals , 2002 .

[5]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[6]  Li Ping,et al.  The Factor Graph Approach to Model-Based Signal Processing , 2007, Proceedings of the IEEE.

[7]  Lei Xu,et al.  Using LDPC-Coded Modulation and Coherent Detection for Ultra Highspeed Optical Transmission , 2007, Journal of Lightwave Technology.

[8]  G.C. Papen,et al.  Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[9]  I. Djordjevic,et al.  Achievable information rates for high-speed long-haul optical transmission , 2005, Journal of Lightwave Technology.

[10]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[11]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[12]  S. Kumar Intrachannel four-wave mixing in dispersion managed RZ systems , 2001, IEEE Photonics Technology Letters.

[13]  G. Kramer,et al.  Fiber Capacity Limits With Optimized Ring Constellations , 2009, IEEE Photonics Technology Letters.

[14]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[15]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[16]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[17]  John G. Proakis,et al.  Digital Communications , 1983 .

[18]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[19]  T. Mizuochi,et al.  LDPC-based advanced FEC for 100 Gbps transmission , 2008, 2008 Digest of the IEEE/LEOS Summer Topical Meetings.

[20]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[21]  V. Pechenkin,et al.  Constrained Coding for Quasi-Linear Optical Data Transmission Systems , 2006, Journal of Lightwave Technology.

[22]  R. Koetter,et al.  Turbo equalization , 2004, IEEE Signal Processing Magazine.

[23]  I.B. Djordjevic,et al.  Low-density parity-check codes for 40-gb/s optical transmission systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[25]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[26]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[27]  Peter J. Winzer,et al.  Advanced Optical Modulation Formats , 2006, Proceedings of the IEEE.

[28]  T. Mizuochi,et al.  Recent progress in forward error correction and its interplay with transmission impairments , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Babak Daneshrad,et al.  Low BER performance estimation of LDPC codes via application of importance sampling to trapping sets , 2009, IEEE Transactions on Communications.

[30]  Frank R. Kschischang,et al.  Pseudolinear optical system reach enhancement via runlength-limited coding , 2008, IEEE Journal on Selected Areas in Communications.

[31]  Brian H. Marcus,et al.  Finite-State Modulation Codes for Data Storage , 2004 .

[32]  Gerhard Kramer,et al.  Capacity limits of information transport in fiber-optic networks. , 2008, Physical review letters.

[33]  Henk Wymeersch,et al.  Iterative Receiver Design , 2007 .

[34]  I.B. Djordjevic,et al.  Chromatic Dispersion Compensation using LDPC-Coded Turbo Equalization , 2007, 2007 Digest of the IEEE/LEOS Summer Topical Meetings.

[35]  Frank R. Kschischang,et al.  Power Reduction Techniques for LDPC Decoders , 2008, IEEE Journal of Solid-State Circuits.

[36]  H. Yoshida,et al.  Reduced-Complexity Decoding Algorithm for LDPC Codes for Practical Circuit Implementation in Optical Communications , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[37]  P. V. Mamyshev,et al.  Pulse-overlapped dispersion-manageddata transmission and intrachannel four-wave mixing , 1999 .

[38]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[39]  I.B. Djordjevic,et al.  Next Generation FEC for High-Capacity Communication in Optical Transport Networks , 2009, Journal of Lightwave Technology.

[40]  Kazuro Kikuchi Coherent optical communication systems , 2008 .

[41]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[42]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[43]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[44]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[45]  Peter J. Winzer,et al.  2 – Advanced optical modulation formats , 2008 .

[46]  B. Vasic,et al.  Multilevel coding in M-ary DPSK/differential QAM high-speed optical transmission with direct detection , 2006, Journal of Lightwave Technology.

[47]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[48]  Andrew C. Singer,et al.  Turbo equalization: principles and new results , 2002, IEEE Trans. Commun..

[49]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[50]  Hideki Imai,et al.  Correction to 'A New Multilevel Coding Method Using Error-Correcting Codes' , 1977, IEEE Trans. Inf. Theory.

[51]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[52]  Scott R. Bickham,et al.  Ghost-pulse generation suppression in phase-modulated 40-Gb/s RZ transmission , 2003 .

[53]  I.B. Djordjevic,et al.  A class of non-binary regular girth-8 LDPC codes for optical communication channels , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[54]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[55]  Costas N. Georghiades,et al.  Exploiting faster-than-Nyquist signaling , 2003, IEEE Trans. Commun..

[56]  C. Menyuk,et al.  Optimization of the split-step Fourier method in modeling optical-fiber communications systems , 2003 .

[57]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[58]  F. Buchali,et al.  Performance of turbo equalizers for optical PMD channels , 2006, Journal of Lightwave Technology.

[59]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[60]  Vincent W. S. Chan,et al.  Questions? Questions? Questions? , 2008 .

[61]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[62]  Ivan B Djordjevic,et al.  Large Girth Low-Density Parity-Check Codes for Long-Haul High-Speed Optical Communications , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[63]  J. E. Mazo,et al.  Faster than Nyquist Signaling: Algorithms to Silicon , 2014 .

[64]  B. Vasic,et al.  Suppression of intrachannel nonlinear effects using pseudoternary constrained codes , 2006, Journal of Lightwave Technology.

[65]  B. Vasic,et al.  Ghost-pulse reduction in 40-Gb/s systems using line coding , 2004, IEEE Photonics Technology Letters.

[66]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[67]  Y. Konishi,et al.  Experimental Demonstration of Concatenated LDPC and RS Codes by FPGAs Emulation , 2009, IEEE Photonics Technology Letters.

[68]  I. Djordjevic,et al.  Constrained coding techniques for the suppression of intrachannel nonlinear effects in high-speed optical transmission , 2006, Journal of Lightwave Technology.

[69]  Henry J. Landau,et al.  On the minimum distance problem for faster-than-Nyquist signaling , 1988, IEEE Trans. Inf. Theory.