Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning

Most work in quantum circuit optimization has been performed in isolation from the results of quantum fault-tolerance. Here we present a polynomial-time algorithm for optimizing quantum circuits that takes the actual implementation of fault-tolerant logical gates into consideration. Our algorithm resynthesizes quantum circuits composed of Clifford group and T gates, the latter being typically the most costly gate in fault-tolerant models, e.g., those based on the Steane or surface codes, with the purpose of minimizing both T-count and T-depth. A major feature of the algorithm is the ability to resynthesize circuits with ancillae at effectively no additional cost, allowing space-time trade-offs to be easily explored. The tested benchmarks show up to 65.7% reduction in T-count and up to 87.6% reduction in T-depth without ancillae, or 99.7% reduction in T-depth using ancillae.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[3]  Michael A. Nielsen,et al.  Quantum computing and polynomial equations over the finite field Z2 , 2005, Quantum Inf. Comput..

[4]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[5]  Martin Rötteler,et al.  Quantum Algorithms: Applicable Algebra and Quantum Physics , 2001 .

[6]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[7]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[8]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[9]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[10]  D. Maslov,et al.  Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures , 2007 .

[11]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[12]  Dhiraj K. Pradhan,et al.  On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography , 2007, TQC.

[13]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[14]  Dhiraj K. Pradhan,et al.  An O(m2)-depth quantum algorithm for the elliptic curve discrete logarithm problem over GF(2m)a , 2009, Quantum Inf. Comput..

[15]  Dmitri Maslov,et al.  Optimization of Clifford Circuits , 2013, ArXiv.

[16]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[17]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[18]  Igor L. Markov,et al.  Constant-optimized quantum circuits for modular multiplication and exponentiation , 2012, Quantum Inf. Comput..

[19]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  J. Mathew,et al.  An O(m 2 )-depth quantum algorithm for the elliptic curve discrete logarithm problem over GF(2 m ) a , 2009 .

[21]  Michael J. Biercuk,et al.  Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins , 2012 .

[22]  John P. Hayes,et al.  Optimal synthesis of linear reversible circuits , 2008, Quantum Inf. Comput..

[23]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[24]  J. Edmonds Minimum partition of a matroid into independent subsets , 1965 .

[25]  Austin G. Fowler,et al.  Towards practical classical processing for the surface code. , 2011, Physical review letters.

[26]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[27]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[28]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[30]  Michael A. Nielsen,et al.  Quantum computing and polynomial equations over the finite field Z 2 , 2004 .

[31]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Terry Rudolph,et al.  A simple encoding of a quantum circuit amplitude as a matrix permanent , 2009, ArXiv.

[33]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[34]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[35]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[36]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[37]  Yasuhiro Takahashi,et al.  Quantum addition circuits and unbounded fan-out , 2009, Quantum Inf. Comput..

[38]  Paul Adrien Maurice Dirac,et al.  A new notation for quantum mechanics , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[40]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[43]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[44]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.