Using Modular Self-Reconfiguring Robots for Locomotion

We discuss the applications of modular self-reconfigurable robots to navigation. We show that greedy algorithms are complete for motion planning over a class of modular reconfigurable robots. We illustrate the application of this result on two self-reconfigurable robot systems we designed and built in our lab: the robotic molecule and the atom. We describe the modules and our locomotion experiments.

[1]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[2]  Daniela Rus,et al.  Motion synthesis for the self-reconfiguring molecule , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[3]  Eiichi Yoshida,et al.  Reconfiguration Method for a Distributed Mechanical System , 1996 .

[4]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[5]  Isao Shimoyama,et al.  Dynamics of self-assembling systems: Analogy with chemical kinetics , 1994 .

[6]  Daniela Rus,et al.  The Inchworm Robot: A Multi-Functional System , 2000, Auton. Robots.

[7]  Marsette Vona,et al.  Self-reconfiguration planning with compressible unit modules , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[9]  V. Lumelsky,et al.  Algorithmic issues of sensor-based robot motion planning , 1987, 26th IEEE Conference on Decision and Control.

[10]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[11]  Isao Shimoyama,et al.  Dynamics of Self-Assembling Systems: Analogy with Chemical Kinetics , 1994, Artificial Life.

[12]  Gregory S. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996, J. Field Robotics.

[13]  Daniela Rus New Directions: Self-Reconfiguring Robots , 1998, IEEE Intell. Syst..

[14]  Arthur C. Sanderson,et al.  TETROBOT modular robotics: prototype and experiments , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[15]  Christiaan J. J. Paredis,et al.  Design of modular fault tolerant manipulators , 1995 .

[16]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .

[17]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[18]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[20]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[21]  Zack J. Butler,et al.  Self-reconfiguring robots , 2002, CACM.

[22]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.