Extrinsic projection of Itˆo SDEs on submanifolds with applications to non-linear filtering

. We define the notion of the extrinsic Itˆo projection of a stochastic differential equation (SDE) on a submanifold. This allows one to systematically develop low dimensional approximations to high dimensional SDEs in a differential geometric setting. We consider the example of approximating the non-linear filtering problem with a Gaussian distribution and show how the Itˆo projection leads to improved approximations in the Gaussian family. We briefly discuss the approximations for more general families of distribution. We perform a numerical compar-ison of our projection filters with the classical Extended Kalman Filter to demonstrate the efficacy of the approach.

[1]  Damiano Brigo,et al.  Nonlinear filtering via stochastic PDE projection on mixture manifolds in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{docum , 2013, Mathematics of Control, Signals, and Systems.

[2]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[3]  D. Brigo,et al.  mixture manifolds with computer algorithms and numerical examples , 2013, 1303.6236.

[4]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[5]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[6]  Bernard Hanzon,et al.  Approximate nonlinear filtering by projection on exponential manifolds of densities , 1999 .

[7]  N. U. Ahmed,et al.  Linear and Nonlinear Filtering for Scientists and Engineers , 1999 .

[8]  D. Brigo On the nice behaviour of the Gaussian projection filter with small observation noise , 1995 .

[9]  F. Le Gland,et al.  A differential geometric approach to nonlinear filtering: the projection filter , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  Jean Picard Efficiency of the extended Kalman filter for nonlinear systems with small noise , 1991 .

[11]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[12]  S. Marcus,et al.  Nonexistence of finite dimensional filters for conditional statistics of the cubic sensor problem , 1983 .

[13]  E. J. McShane Stochastic Calculus and Stochastic Models , 1974 .

[14]  H. Kushner Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.

[15]  R. L. Stratonovich A New Representation for Stochastic Integrals and Equations , 1966 .

[16]  Donald L. Fisk,et al.  QUASI-MARTINGALES AND STOCHASTIC INTEGRALS , 1963 .

[17]  Kiyosi Itô Stochastic Differential Equations in a Differentiable Manifold , 1950, Nagoya Mathematical Journal.