Damage detection and generalized Fourier coefficients

This paper deals with damage identification in a vibrating beam, either under axial or bending vibration, based on measurement of damage-induced changes in natural frequencies. It is found that frequency shifts contain information on certain generalized Fourier coefficients of the stiffness variation caused by the damage. Under the assumptions that the damaged beam is a perturbation of the undamaged one and the damage belongs to a half of the beam, a reconstruction procedure based on an iterative algorithm is proposed. The theoretical results are confirmed by a comparison with dynamic measurements on steel beams with localized damages.

[1]  A. Morassi,et al.  The use of antiresonances for crack detection in beams , 2004 .

[2]  Fabrizio Vestroni,et al.  Monitoring of structural systems by using frequency data , 1999 .

[3]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[4]  Fabrizio Gatti,et al.  A damage analysis of steel beams , 1993 .

[5]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[6]  R. Knobel,et al.  An inverse Sturm-Liouville problem for an impedance , 1993 .

[7]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[8]  F. J. Soeiro,et al.  Structural damage detection based on static and modal analysis , 1989 .

[9]  B. D. Lowé On the Construction of an Euler-Bernoulli Beam from Spectral Data , 1993 .

[10]  Antonino Morassi,et al.  IDENTIFICATION OF A CRACK IN A ROD BASED ON CHANGES IN A PAIR OF NATURAL FREQUENCIES , 2001 .

[11]  Nikos A. Aspragathos,et al.  Identification of crack location and magnitude in a cantilever beam from the vibration modes , 1990 .

[12]  V. Papanicolaou,et al.  On the inverse problem of a fourth-order self-adjoint binomial operator , 1997 .

[13]  M. Dilena,et al.  Identification of Crack Location in Vibrating Beams from Changes in Node Positions , 2002 .

[14]  Albert W. Schueller Uniqueness for Near-Constant Data in Fourth-Order Inverse Eigenvalue Problems , 2001 .

[15]  Guido De Roeck,et al.  STRUCTURAL DAMAGE IDENTIFICATION USING MODAL DATA. I: SIMULATION VERIFICATION , 2002 .

[16]  Y. Narkis Identification of Crack Location in Vibrating Simply Supported Beams , 1994 .

[17]  David C. Barnes The inverse eigenvalue problem with finite data , 1991 .

[18]  A. Morassi,et al.  Damage detection in discrete vibrating systems , 2006 .

[19]  Ole Hald,et al.  The inverse Sturm-Liouville problem and the Rayleigh-Ritz method , 1978 .

[20]  H. Weinberger,et al.  A first course in partial differential equations , 1965 .

[21]  Fergus R. Fricke,et al.  Determination of blocking locations and cross‐sectional area in a duct by eigenfrequency shifts , 1990 .

[22]  H. Petroski Comments on “Free vibration of beams with abrupt changes in cross-section” , 1984 .

[23]  Antonino Morassi,et al.  Modal analysis of notched bars: tests and comments on the sensitivity of an identification technique , 1995 .

[24]  M. Yuen A NUMERICAL STUDY OF THE EIGENPARAMETERS OF A DAMAGED CANTILEVER , 1985 .

[25]  G. D. Jeong,et al.  Assessment of structural damage from natural frequency measurements , 1993 .

[26]  T. Chondros,et al.  Identification of cracks in welded joints of complex structures , 1980 .

[27]  Antonino Morassi,et al.  Identification of Two Cracks in a Simply Supported Beam from Minimal Frequency Measurements , 2001 .

[28]  P. Gudmundson Eigenfrequency changes of structures due to cracks, notches or other geometrical changes , 1982 .

[29]  A. Barr,et al.  One-dimensional theory of cracked Bernoulli-Euler beams , 1984 .

[30]  Antonino Morassi,et al.  Localizing a Notch in a Steel Frame from Frequency Measurements , 1997 .

[31]  Robert Y. Liang,et al.  Quantitative NDE technique for assessing damages in beam structures , 1992 .

[32]  Fabrizio Vestroni,et al.  Detection of damage in beams subjected to diffused cracking , 2000 .

[33]  S. Law,et al.  Structural Damage Detection from Incomplete and Noisy Modal Test Data , 1998 .

[34]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .

[35]  James M. Ricles,et al.  Damage Detection in Structures by Modal Vibration Characterization , 1999 .

[36]  Robert D. Adams,et al.  A Vibration Technique for Non-Destructively Assessing the Integrity of Structures: , 1978 .

[37]  Antonino Morassi,et al.  Estimating damage in a rod from changes in node positions , 1999 .

[38]  H. Hochstadt,et al.  AN INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA* , 1978 .

[39]  Antonino Morassi,et al.  Crack‐Induced Changes in Eigenparameters of Beam Structures , 1993 .

[40]  Jyoti K. Sinha,et al.  SIMPLIFIED MODELS FOR THE LOCATION OF CRACKS IN BEAM STRUCTURES USING MEASURED VIBRATION DATA , 2002 .

[41]  Fabrizio Vestroni,et al.  DAMAGE DETECTION IN BEAM STRUCTURES BASED ON FREQUENCY MEASUREMENTS , 2000 .

[42]  Antonino Morassi,et al.  A uniqueness result on crack location in vibrating rods , 1997 .

[43]  R. B. Testa,et al.  Modal Analysis for Damage Detection in Structures , 1991 .

[44]  S. P. Lele,et al.  Modelling of Transverse Vibration of Short Beams for Crack Detection and Measurement of Crack Extension , 2002 .

[45]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .

[46]  P. Perry,et al.  Isopectral sets for fourth-order ordinary differential operators , 1998 .