Embryonic development and egg viability of wMel-infected Aedes aegypti

[1]  A. Clements The Biology of Mosquitoes, Volume 1: Development, Nutrition and Reproduction , 2023 .

[2]  R. Maciel-de-Freitas,et al.  Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion , 2019, PLoS neglected tropical diseases.

[3]  J. Powell,et al.  Lack of Evidence for Natural Wolbachia Infections in Aedes aegypti (Diptera: Culicidae) , 2018, Journal of Medical Entomology.

[4]  M. N. Rocha,et al.  Wolbachia significantly impacts the vector competence of Aedes aegypti for Mayaro virus , 2018, Scientific Reports.

[5]  R. Bruno,et al.  In tune with nature: Wolbachia does not prevent pre-copula acoustic communication in Aedes aegypti , 2018, Parasites & Vectors.

[6]  L. Araripe,et al.  The influence of a light and dark cycle on the egg laying activity of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) , 2018, Memorias do Instituto Oswaldo Cruz.

[7]  S. Sinkins,et al.  The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti , 2018, PLoS pathogens.

[8]  Heather A. Flores,et al.  Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes , 2017, PLoS pathogens.

[9]  S. Sinkins,et al.  Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells , 2017, Nature Communications.

[10]  Suh-Chin Wu,et al.  Zika virus structural biology and progress in vaccine development. , 2017, Biotechnology advances.

[11]  C. Moyes,et al.  Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans , 2017, PLoS neglected tropical diseases.

[12]  A. Hoffmann,et al.  Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress , 2016, bioRxiv.

[13]  R. Maciel-de-Freitas,et al.  Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan , 2016, Memorias do Instituto Oswaldo Cruz.

[14]  G. Devine,et al.  Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development , 2016, PLoS neglected tropical diseases.

[15]  I. Velez,et al.  The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti , 2016, Scientific Reports.

[16]  M. N. Rocha,et al.  Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes , 2016, Cell host & microbe.

[17]  C. Logullo,et al.  The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes , 2016, Parasites & Vectors.

[18]  Giovanini Evelim Coelho,et al.  Zika virus in the Americas: Early epidemiological and genetic findings , 2016, Science.

[19]  B. M. Christensen,et al.  The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti , 2016, PLoS neglected tropical diseases.

[20]  L. Moreira,et al.  Exploiting Intimate Relationships: Controlling Mosquito-Transmitted Disease with Wolbachia. , 2016, Trends in parasitology.

[21]  C. Simmons,et al.  Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management , 2016, PLoS pathogens.

[22]  R. Menna-Barreto,et al.  Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. , 2015, Journal of insect physiology.

[23]  S. Weaver,et al.  The Global Virus Network: Challenging chikungunya. , 2015, Antiviral research.

[24]  S. Ritchie,et al.  Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti , 2015, PLoS neglected tropical diseases.

[25]  L. Delang,et al.  Towards antivirals against chikungunya virus , 2015, Antiviral Research.

[26]  R. Maciel-de-Freitas,et al.  From Lab to Field: The Influence of Urban Landscapes on the Invasive Potential of Wolbachia in Brazilian Aedes aegypti Mosquitoes , 2015, PLoS neglected tropical diseases.

[27]  R. Sang,et al.  Evolution of mosquito preference for humans linked to an odorant receptor , 2014, Nature.

[28]  Ben L. Phillips,et al.  Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations , 2014, PLoS neglected tropical diseases.

[29]  A. Hoffmann,et al.  Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. , 2014, The American journal of tropical medicine and hygiene.

[30]  R. Maciel-de-Freitas,et al.  Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak , 2014, PloS one.

[31]  A. Martins,et al.  Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. , 2014, Journal of insect physiology.

[32]  Thomas Walker,et al.  Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia , 2014, PLoS neglected tropical diseases.

[33]  U. Thisyakorn,et al.  Latest developments and future directions in dengue vaccines , 2014, Therapeutic advances in vaccines.

[34]  John S. Brownstein,et al.  The global distribution and burden of dengue , 2013, Nature.

[35]  P. Hammerstein,et al.  Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected , 2012, PloS one.

[36]  L. Suesdek,et al.  Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae). , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[37]  S. Ritchie,et al.  Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission , 2011, Nature.

[38]  S. Ritchie,et al.  The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations , 2011, Nature.

[39]  G. Kuno Early History of Laboratory Breeding of Aedes aegypti (Diptera: Culicidae) Focusing on the Origins and use of Selected Strains , 2010, Journal of medical entomology.

[40]  S. O'Neill,et al.  A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence , 2010, PLoS neglected tropical diseases.

[41]  Zhiyong Xi,et al.  The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti , 2010, PLoS pathogens.

[42]  C. Logullo,et al.  Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis , 2010, BMC Developmental Biology.

[43]  Peter A. Ryan,et al.  A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium , 2009, Cell.

[44]  A. Martins,et al.  Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. , 2009, Memorias do Instituto Oswaldo Cruz.

[45]  Bodil N. Cass,et al.  Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti , 2009, Science.

[46]  J. Werren,et al.  Wolbachia: master manipulators of invertebrate biology , 2008, Nature Reviews Microbiology.

[47]  S. Juliano,et al.  Detritus Type Alters the Outcome of Interspecific Competition Between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) , 2008, Journal of medical entomology.

[48]  N. Wedell,et al.  Increased male mating rate in Drosophila is associated with Wolbachia infection , 2006, Journal of evolutionary biology.

[49]  W. Brogdon,et al.  Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. , 2005, Memorias do Instituto Oswaldo Cruz.

[50]  M. J. Soares,et al.  Anopheles albitarsis embryogenesis: morphological identification of major events. , 2002, Memorias do Instituto Oswaldo Cruz.

[51]  N. A. Honório,et al.  Freqüência de larvas e pupas de Aedes aegypti e Aedes albopictus em armadilhas, Brasil , 2001 .

[52]  M. Trpiš A new bleaching and decalcifying method for general use in zoology , 1970 .

[53]  J. Kliewer Weight and Hatchability of Aedes aegypti Eggs (Diptera: Culicidae) , 1961 .

[54]  Sir Rickard Christophers Aëdes Aegypti The Yellow Fever Mosquito: Its Life History, Bionomics and Structure , 1960 .

[55]  B. Rosay Gross External Morphology of Embryos of Culex Tarsalis Coquillett (Diptera: Culicidae) , 1959 .

[56]  J. Jardim,et al.  Participação social no controle da dengue: a importância de uma mudança conceitual , 2015 .

[57]  E. McGraw,et al.  Competition for Amino Acids Between Wolbachia and the Mosquito Host, Aedes aegypti , 2013, Microbial Ecology.

[58]  A. Clements Development, nutrition, and reproduction , 2008 .

[59]  R. Lourenço-de-Oliveira,et al.  [Frequency of Aedes aegypti and Aedes albopictus larvae and pupae in traps, Brazil]. , 2001, Revista de saude publica.

[60]  O. P. Forattini,et al.  Principais mosquitos de importância sanitária no Brasil , 1995 .

[61]  Rotraut A. G. B. Consoli,et al.  Principais mosquitos de importância sanitária no Brasil , 1994 .