Bio-Logics: Logical Analysis of Bioregulatory Networks

We discuss different ways of applying logic to analyze the structure and dynamics of regulatory networks in molecular biology. First, the structure of a bioregulatory network may be described naturally using propositional or multi-valued logic. Second, the resulting non-deterministic dynamics may be analyzed using temporal logic and model checking. Third, information on time delays may be incorporated using a refined modeling approach based on timed automata.

[1]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[2]  Rajeev Alur,et al.  Timed Automata , 1999, CAV.

[3]  Elisabeth Remy,et al.  From minimal signed circuits to the dynamics of Boolean regulatory networks , 2008, ECCB.

[4]  Christophe Soulé,et al.  Mathematical approaches to differentiation and gene regulation. , 2005, Comptes rendus biologies.

[5]  Vincent Danos,et al.  Modeling and querying biomolecular interaction networks , 2004, Theor. Comput. Sci..

[6]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[7]  Denis Thieffry,et al.  Logical modelling of cell cycle control in eukaryotes: a comparative study. , 2009, Molecular bioSystems.

[8]  Adrien Richard Modèle formel pour les réseaux de régulation génétique et influence des circuits de rétroaction , 2006 .

[9]  Adrien Richard,et al.  Necessary conditions for multistationarity in discrete dynamical systems , 2007, Discret. Appl. Math..

[10]  Denis Thieffry,et al.  Qualitative Analysis of Regulatory Graphs: A Computational Tool Based on a Discrete Formal Framework , 2003, POSTA.

[11]  Radu Mateescu,et al.  Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli , 2005, ISMB.

[12]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[13]  Alexander Bockmayr,et al.  Incorporating Time Delays into the Logical Analysis of Gene Regulatory Networks , 2006, CMSB.

[14]  Denis Thieffry,et al.  A description of dynamical graphs associated to elementary regulatory circuits , 2003, ECCB.

[15]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[16]  Aurélien Naldi,et al.  Decision Diagrams for the Representation and Analysis of Logical Models of Genetic Networks , 2007, CMSB.

[17]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[18]  Radu Mateescu,et al.  Analysis and Verification of Qualitative Models of Genetic Regulatory Networks: A Model-Checking Approach , 2005, IJCAI.

[19]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[20]  Alexander Bockmayr,et al.  Relating Attractors and Singular Steady States in the Logical Analysis of Bioregulatory Networks , 2007, AB.

[21]  R. Thomas,et al.  Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. , 2001, Chaos.

[22]  H. Siebert Analysis of Discrete Bioregulatory Networks Using Symbolic Steady States , 2011, Bulletin of mathematical biology.

[23]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[24]  M Sugita,et al.  Functional analysis of chemical systems in vivo using a logical circuit equivalent. 3. Analysis using a digital circuit combined with an analogue computer. , 1963, Journal of theoretical biology.

[25]  M Kaufman,et al.  A logical analysis of T cell activation and anergy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  René Thomas,et al.  Kinetic logic : a Boolean approach to the analysis of complex regulatory systems : proceedings of the EMBO course "Formal analysis of genetic regulation," held in Brussels, September 6-16, 1977 , 1979 .

[27]  Alexander Bockmayr,et al.  Temporal constraints in the logical analysis of regulatory networks , 2008, Theor. Comput. Sci..

[28]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[29]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[30]  Adrien Richard,et al.  Negative circuits and sustained oscillations in asynchronous automata networks , 2009, Adv. Appl. Math..

[31]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[32]  Alexander Bockmayr,et al.  Context Sensitivity in Logical Modeling with Time Delays , 2007, CMSB.

[33]  Adrien Richard,et al.  Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. , 2004, Journal of theoretical biology.

[34]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.