Arrays of Two-Dimensional Islands Formed by Submonolayer Insertions: Growth, Properties, Devices

Ultrathin insertions of a narrow band-gap material in wide band-gap matrices represent a challenging medium in view of aspects of growth phenomena, unique optical properties, and non-trivial approaches for structural characterization. In a very general case ultrathin submonolayer insertions may form arrays of islands due to the principally discrete nature of the growth front. If the islands are large enough, these islands may act as locally formed quantum well (QW) insertions. If, however, the islands' size is comparable to the Bohr radius and the band-gap difference between the insert and the matrix material is large enough, quantum dots (QD) are formed. Realization of the first or the second regime depends on the surface properties of the substrate and the deposit, particularly, on the tensors of the intrinsic surface stress of both materials and on the lattice mismatch. In this work we consider in detail the case of ultrathin CdSe insertions in wide gap ZnMgSSe matrices: that the nominal thickness is chosen below the critical thickness for three-dimensional (3D) island formation. We give an overview of the experimental results available for these structures obtained by submonolayer or about-one monolayer CdSe depositions. A comparison with similar phenomena observed in conventional III-V and III-N systems is given and possible growth scenarios are discussed. We also discuss practical device applications of the structures based on ultrathin insertions for non-traditional devices. Examples of resonant waveguiding and lasing in edge geometry, of surface emitting lasers with low finesse cavities, and of broad-miniband high-frequency Esaki-Tsu anti-dot superlattices are given.

[1]  C. Klingshirn,et al.  On the nature of nanometer-scale islands formed by cadmium selenide deposition on hexagonal cadmium sulfide (0001)A , 1998 .

[2]  V. A. Semenov,et al.  Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface-emitting laser , 1999 .

[3]  N. Ledentsov,et al.  Spontaneous Formation of Arrays of Strained Islands: Thermodynamics Versus Kinetics , 1999 .

[4]  S. Permogorov,et al.  Free exciton motion in crystals and exciton-phonon interaction , 1966 .

[5]  N. Ledentsov,et al.  Vertical correlations and anticorrelations in multisheet arrays of two-dimensional islands , 1998 .

[6]  Chu,et al.  Scattering-controlled transmission resonances and negative differential conductance by field-induced localization in superlattices. , 1990, Physical review letters.

[7]  F. Henneberger,et al.  Self‐Assembled Visible‐Bandgap II–VI Quantum Dots , 1997 .

[8]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[9]  A. R. Kovsh,et al.  Intrinsic optical confinement and lasing in InAs–AlGaAs submonolayer superlattices , 1999 .

[10]  Formation of GaAsN nanoinsertions in a GaN matrix by metal-organic chemical vapour deposition , 2000 .

[11]  V. A. Semenov,et al.  Surface-mode lasing from stacked InGaN insertions in a GaN matrix , 1999 .

[12]  Dieter Bimberg,et al.  Control of the electronic properties of CdSe submonolayer superlattices via vertical correlation of quantum dots , 1999 .

[13]  Shuji Nakamura,et al.  SUBBAND EMISSIONS OF INGAN MULTI-QUANTUM-WELL LASER DIODES UNDER ROOM-TEMPERATURE CONTINUOUS WAVE OPERATION , 1997 .

[14]  Kazuhiro Ohkawa,et al.  CdSe/ZnSe Quantum Dot Structures: Structural and Optical Investigations , 1997 .

[15]  I. Krestnikov,et al.  Three-dimensionally confined excitons and biexcitons in submonolayer-CdSe/ZnSe superlattices , 1999 .

[16]  R. Steingruber,et al.  Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots , 2000 .

[17]  Niloy K. Dutta,et al.  Excellent uniformity and very low (<50 A/cm2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate , 1991 .

[18]  Soojoon Lee,et al.  Interband magnetoabsorption in strained epitaxially grown ZnTe and ZnSe , 1998 .

[19]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[20]  I. Krestnikov,et al.  Response to “Comment on ‘Ground state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix’ ” [Appl. Phys. Lett. 70, 2765 (1997)] , 1997 .

[21]  I. Krestnikov,et al.  Gain studies of (Cd, Zn)Se quantum islands in a ZnSe matrix , 1998 .

[22]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[23]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[24]  U. Woggon,et al.  Optical transitions in CdSe quantum dots: From discrete levels to broad gain spectra , 1996 .

[25]  D. Bimberg,et al.  Line broadening and localization mechanisms in CdSe/ZnSe quantum dots , 2000 .

[26]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[27]  Detlef Hommel,et al.  SINGLE ZERO-DIMENSIONAL EXCITONS IN CDSE/ZNSE NANOSTRUCTURES , 1998 .

[28]  S. Kaiser,et al.  Digital analysis of high resolution transmission electron microscopy lattice images , 1996 .

[29]  Tersoff,et al.  Shape transition in growth of strained islands: Spontaneous formation of quantum wires. , 1993, Physical review letters.

[30]  F. Salvan,et al.  Radiative Recombination in Highly Excited CdS , 1969 .

[31]  D. Gerthsen,et al.  ROOM-TEMPERATURE LASING OF STRAIN-COMPENSATED CDSE/ZNSSE QUANTUM ISLAND LASER STRUCTURES , 1999 .

[32]  H. A. Carmona,et al.  Photoluminescence spectroscopy of self-assembled InAs quantum dots in strong magnetic field and under high pressure , 1997 .

[33]  Mikhail V. Maximov,et al.  3.5 W CW operation of quantum dot laser , 1999 .

[34]  Wang,et al.  Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices. , 1990, Physical review letters.

[35]  Andrew G. Glen,et al.  APPL , 2001 .

[36]  U. Woggon,et al.  Comment on “Ground-state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix” [Appl. Phys. Lett. 69, 1343 (1996)] , 1997 .

[37]  I. Krestnikov,et al.  Lasing in submonolayer CdSe structures in a ZnSe matrix without external optical confinement , 1997 .

[38]  I. Krestnikov,et al.  RT lasing and efficient optical confinement in CdSe/ZnMgSSe submonolayer superlattices , 1998 .

[39]  D. Gerthsen,et al.  Properties and self-organization of CdSe:S quantum islands grown with a cadmium sulfide compound source , 2000 .

[40]  N. Ledentsov,et al.  Miniband transport in a semiconductor superlattice with submonolayer barriers , 1999 .

[41]  S. Ito,et al.  A study of internal absorption in Zn(Cd)Se/ZnMgSSe semiconductor lasers , 1994 .

[42]  Z. Alferov,et al.  CdSe fractional-monolayer active region of molecular beam epitaxy grown green ZnSe-based lasers , 1999 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  J. Puls,et al.  Excitonic properties of ZnSe/(Zn,Mg)Se quantum wells: A model study of the tensile-strain situation , 1998 .

[45]  Akira Ishibashi,et al.  Significant progress in II-VI blue-green laser diode lifetime , 1998 .

[46]  N. N. Ledentsov,et al.  Optical characterization of submonolayer and monolayer InAs structures grown in a GaAs matrix on (100) and high‐index surfaces , 1994 .

[47]  N. Ledentsov,et al.  Character of the Cd distribution in ultrathin CdSe layers in a ZnSe matrix , 2000 .

[48]  J. Bergman,et al.  Disorder-induced exciton localization in a fractional monolayer ZnSe/CdSe superlattice , 1998 .

[49]  R. Schneider,et al.  Transmission electron microscopy investigation of structural properties of self-assembled CdSe/ZnSe quantum dots , 1998 .

[50]  I. P. Soshnikov,et al.  Lasing in structures with InAs quantum dots in an (Al, Ga)As matrix grown by submonolayer deposition , 1999 .

[51]  Wang,et al.  Magneto-optical properties in ultrathin InAs-GaAs quantum wells. , 1994, Physical review. B, Condensed matter.

[52]  O. Brandt,et al.  Role of broken translational invariance for the optical response of excitons in low-dimensional semiconductors , 1992 .

[53]  James A. Lott,et al.  Vertical cavity lasers based on vertically coupled quantum dots , 1997 .

[54]  A. Nurmikko,et al.  Spectroscopy of a ZnCdSe/ZnSSe quantum well diode laser in high magnetic fields , 1997 .

[55]  Nikolai N. Ledentsov,et al.  Optical anisotropy in vertically coupled quantum dots , 1999 .

[56]  Nikolai N. Ledentsov,et al.  Interconnection between gain spectrum and cavity mode in a quantum-dot vertical-cavity laser , 1999 .

[57]  Nikolai N. Ledentsov,et al.  Ordered arrays of quantum dots: Formation, electronic spectra, relaxation phenomena, lasing , 1996 .

[58]  I. Krestnikov,et al.  Ground state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix , 1996 .

[59]  V. A. Semenov,et al.  Optical Properties of Structures with Single and Multiple InGaN Insertions in a GaN Matrix , 1999 .

[60]  D. Gerthsen,et al.  Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures , 2000 .

[61]  Weinberg,et al.  Island scaling in strained heteroepitaxy: InAs/GaAs(001). , 1995, Physical review letters.

[62]  Egorov,et al.  Ultranarrow Luminescence Lines from Single Quantum Dots. , 1995, Physical review letters.

[63]  Weinberg,et al.  Initial stages of InAs epitaxy on vicinal GaAs(001)-(2 x 4). , 1994, Physical review. B, Condensed matter.

[64]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[65]  D. Gerthsen,et al.  Investigations on the Stranski–Krastanow growth of CdSe quantum dots , 2000 .