Dynamic electric field alignment of metal-organic framework microrods.

Alignment of Metal Organic Framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields whilst suspended in bromobenzene, giving rise to rapid elec-trooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

[1]  B. Damaskin,et al.  Structure of the Electrical Double Layer in Non-aqueous Solvents , 1979 .

[2]  Nicolaas A. Vermeulen,et al.  Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-based Metal-Organic Framework NU-1000 – A Comparative Structural Analysis , 2018 .

[3]  P. Heitjans,et al.  Defibrillation of soft porous metal-organic frameworks with electric fields , 2017, Science.

[4]  J. Caro,et al.  Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation , 2018, Science Advances.

[5]  T. Nakato,et al.  Electrooptic Response of Colloidal Liquid Crystals of Inorganic Oxide Nanosheets Prepared by Exfoliation of a Layered Niobate , 2011 .

[6]  R. W. Sillars The properties of a dielectric containing semiconducting particles of various shapes , 1937 .

[7]  J. C. Price,et al.  Dipolar molecular rotors in the metal-organic framework crystal IRMOF-2. , 2008, Physical chemistry chemical physics : PCCP.

[8]  S. Granick,et al.  Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. , 2013, Journal of the American Chemical Society.

[9]  O. Farha,et al.  Revisiting the structural homogeneity of NU-1000, a Zr-based metal-organic framework , 2018 .

[10]  K. Neyts,et al.  Diffuse double layer charging in nonpolar liquids , 2007 .

[11]  A. Thornton,et al.  High-Throughput Screening of Metal-Organic Frameworks for Macroscale Heteroepitaxial Alignment. , 2018, ACS applied materials & interfaces.

[12]  A. Tabbagh,et al.  Modelling of Maxwell–Wagner induced polarisation amplitude for clayey materials , 2009 .

[13]  Nicolaas A. Vermeulen,et al.  Magnetic Control of MOF Crystal Orientation and Alignment. , 2017, Chemistry.

[14]  R. Snurr,et al.  Heterogeneous Diffusion of Alkanes in the Hierarchical Metal-Organic Framework NU-1000. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. Allendorf,et al.  An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. , 2017, Chemical Society reviews.

[16]  R. Vaia,et al.  Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions , 2004 .

[17]  H. Choi,et al.  Novel electrorheological properties of a metal-organic framework Cu3(BTC)2. , 2012, Chemical communications.

[18]  Justin M. Notestein,et al.  Pushing the Limits on Metal-Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for o-Xylene Isomerization and Disproportionation. , 2018, Journal of the American Chemical Society.

[19]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[20]  Frank E. Filisko,et al.  An intrinsic mechanism for the activity of alumino‐silicate based electrorheological materials , 1990 .

[21]  Alfons van Blaaderen,et al.  Switching plastic crystals of colloidal rods with electric fields , 2014, Nature Communications.

[22]  P. Praserthdam,et al.  The influence of Si–O–Zr bonds on the crystal-growth inhibition of zirconia prepared by the glycothermal method , 2003 .

[23]  Qiang Xu,et al.  Metal-Organic Frameworks for Energy Applications , 2017 .

[24]  J. W. Goodwin,et al.  The effect of trace water on non-aqueous silica dispersions , 1988 .

[25]  T. Hor,et al.  Tuning omniphobicity via morphological control of metal-organic framework functionalized surfaces. , 2013, Journal of the American Chemical Society.

[26]  Friedrich Kremer,et al.  Broadband dielectric spectroscopy , 2003 .

[27]  Michael J. Katz,et al.  Directed Growth of Electroactive Metal‐Organic Framework Thin Films Using Electrophoretic Deposition , 2014, Advanced materials.

[28]  F. Ikazaki,et al.  Mechanism of the Electrorheological Effect: Evidence from the Conductive, Dielectric, and Surface Characteristics of Water-Free Electrorheological Fluids , 1998 .

[29]  R. Schmid An Electric Field Induced Breath for Metal–Organic Frameworks , 2017, ACS central science.

[30]  Amy J. Cairns,et al.  Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF , 2010 .

[31]  M. Kiselev,et al.  Metal–Organic Framework Breathing in the Electric Field: A Theoretical Study , 2019, The Journal of Physical Chemistry C.

[32]  Sadanandam Namsani,et al.  Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications , 2018 .

[33]  Delgado,et al.  Polarization of the Electrical Double Layer. Time Evolution after Application of an Electric Field. , 2000, Journal of colloid and interface science.

[34]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[35]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[36]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[37]  Anita J. Hill,et al.  Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. , 2017, Nature materials.

[38]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[39]  Aziz Ghoufi,et al.  Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework , 2017, ACS central science.

[40]  T. Bein,et al.  Oriented growth of the metal organic framework Cu(3)(BTC)(2)(H(2)O)(3).xH(2)O tunable with functionalized self-assembled monolayers. , 2007, Journal of the American Chemical Society.

[41]  Emmanuel Tylianakis,et al.  Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. , 2013, Journal of the American Chemical Society.

[42]  Nicolaas A. Vermeulen,et al.  Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000 , 2015, Nature Protocols.