Cumuliform cloud formation control using parameter-predicting convolutional neural network

Abstract Physically-based cloud simulation is an effective approach for synthesizing realistic cloud. However, generating clouds with desired shapes requires a time-consuming process for selecting the appropriate simulation parameters. This paper addresses such a problem by solving an inverse cloud forming problem. We propose a convolutional neural network, which has the ability of solving nonlinear optimization problems, to estimate the spatiotemporal simulation parameters for given cloud images. The cloud formation process is then simulated by using computational fluid dynamics with these control parameters as initial states. The proposed parameter-predicting model consists of three components, including the feature extraction network, the adversarial network and the parameter generation network. These subnetworks form two parallel branches for different functionality-feature extraction and parameter estimation. To solve the challenge of estimating high-dimensional spatiotemporal simulation parameters, we adapt an encoder and decoder network to compress these parameters into a low-dimensional latent space. We train the proposed deep learning model with pairwise data of time series parameters and the corresponding synthetic images, which are rendered by the density fields of the synthesized clouds under different illuminations. In the practice, our method can simulate physically plausible cloud evolution processes and generate clouds with desired shapes for the real-world and synthetic images.

[1]  Dinesh Manocha,et al.  Efficient Optimal Control of Smoke using Spacetime Multigrid , 2016, ArXiv.

[2]  Bo Ren,et al.  Fluid directed rigid body control using deep reinforcement learning , 2018, ACM Trans. Graph..

[3]  Ken Perlin,et al.  Accelerating Eulerian Fluid Simulation With Convolutional Networks , 2016, ICML.

[4]  Yizhou Yu,et al.  Taming liquids for rapidly changing targets , 2005, SCA '05.

[5]  Stefania Bonafoni,et al.  Spatial and temporal trends of the surface and air heat island over Milan using MODIS data , 2014 .

[6]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[7]  Huamin Wang,et al.  NeuralDrop: DNN-based Simulation of Small-Scale Liquid Flows on Solids , 2018, ArXiv.

[8]  Chang-Hun Kim,et al.  Controlling fluid animation with geometric potential , 2004, Comput. Animat. Virtual Worlds.

[9]  Abel J. P. Gomes,et al.  Real-time simulation of cumulus clouds through SkewT/LogP diagrams , 2017, Comput. Graph..

[10]  Yoshinori Dobashi,et al.  Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics , 2002, Eurographics.

[11]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[12]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[13]  Roddam Narasimha,et al.  Cumulus-Type Flows in the Laboratory and on the Computer: Simulating Cloud Form, Evolution, and Large-Scale Structure , 2014 .

[14]  Meng Wang,et al.  Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder , 2018, IEEE Transactions on Image Processing.

[15]  Nils Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[16]  Joel H. Saltz,et al.  Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images , 2017, Pattern Recognit..

[17]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[18]  Nils Thürey,et al.  Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow , 2018, Comput. Graph. Forum.

[19]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[20]  Greg Turk,et al.  Controlling liquids using meshes , 2012, SCA '12.

[21]  Anselmo Lastra,et al.  Simulation of cloud dynamics on graphics hardware , 2003, HWWS '03.

[22]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[23]  Okke Batelaan,et al.  Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Hui Wang,et al.  A CNN‐based Flow Correction Method for Fast Preview , 2019, Comput. Graph. Forum.

[25]  Qinping Zhao,et al.  Modelling Cumulus Cloud Shape from a Single Image , 2014, Comput. Graph. Forum.

[26]  Viorica Patraucean,et al.  Spatio-temporal video autoencoder with differentiable memory , 2015, ArXiv.

[27]  Nils Thuerey,et al.  ScalarFlow , 2019, ACM Trans. Graph..

[28]  D. Streutker,et al.  Satellite-measured growth of the urban heat island of Houston, Texas , 2003 .

[29]  Yoshinori Dobashi,et al.  An inverse problem approach for automatically adjusting the parameters for rendering clouds using photographs , 2012, ACM Trans. Graph..

[30]  Nils Thürey,et al.  tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , 2018, ACM Trans. Graph..

[31]  Barbara Solenthaler,et al.  Data-driven fluid simulations using regression forests , 2015, ACM Trans. Graph..

[32]  T. Nishita,et al.  Feedback control of cumuliform cloud formation based on computational fluid dynamics , 2008, SIGGRAPH 2008.

[33]  Daniel G. Aliaga,et al.  Fast weather simulation for inverse procedural design of 3D urban models , 2017, TOGS.

[34]  Baskar Ganapathysubramanian,et al.  A deep learning framework for causal shape transformation , 2018, Neural Networks.

[35]  Yoshinori Dobashi,et al.  Adaptive cloud simulation using position based fluids , 2015, Comput. Animat. Virtual Worlds.

[36]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[37]  Mengjie Zhang,et al.  Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation , 2016, ECCV.