An Experimental Comparison of Range Image Segmentation Algorithms

A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under-segmentation, and accuracy of the recovered geometry. A tool is used to objectively compare a machine generated segmentation against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.

[1]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[2]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[4]  Kendall Preston,et al.  Multicomputers and Image Processing: Algorithms and Programs , 1982 .

[5]  T. Poggio Vision by man and machine. , 1984, Scientific American.

[6]  Keith Price,et al.  Anything you can do, I can do better (No you can't) , 1986, Comput. Vis. Graph. Image Process..

[7]  R. DeMori,et al.  Handbook of pattern recognition and image processing , 1986 .

[8]  Anil K. Jain,et al.  Segmentation and Classification of Range Images , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[11]  Anil K. Jain,et al.  Surface classification: hypothesis testing and parameter estimation , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Dmitry B. Goldgof,et al.  A Curvature-Based Approach to Terrain Recognition , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Naokazu Yokoya,et al.  Range Image Segmentation Based on Differential Geometry: A Hybrid Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Anthony P Reeves,et al.  Fast segmentation of range imagery into planar regions , 1989, Comput. Vis. Graph. Image Process..

[15]  Sang Uk Lee,et al.  On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques , 1990, Pattern Recognit..

[16]  Sang Uk Lee,et al.  A comparative performance study of several global thresholding techniques for segmentation , 1990, Comput. Vis. Graph. Image Process..

[17]  F. M. Wahl,et al.  Fast and robust range data acquisition in a low-cost environment , 1990, ISPRS International Conference on Computer Vision and Remote Sensing.

[18]  Jake K. Aggarwal,et al.  Segmentation of 3D range images using pyramidal data structures , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[19]  Anil K. Jain,et al.  Analysis and Interpretation of Range Images , 1989, Springer Series in Perception Engineering.

[20]  Thomas O. Binford,et al.  Ignorance, myopia, and naiveté in computer vision systems , 1991, CVGIP Image Underst..

[21]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[22]  Anil K. Jain,et al.  BONSAI: 3D Object Recognition Using Constrained Search , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Ramesh C. Jain,et al.  A Parallel Technique for Signal-Level Perceptual Organization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Suchendra M. Bhandarkar,et al.  Integra - An Integrated System for Range Image Understanding , 1992, Int. J. Pattern Recognit. Artif. Intell..

[25]  Robert M. Haralick,et al.  Performance characterization in image analysis: thinning, a case in point , 1992, Pattern Recognit. Lett..

[26]  Stan Z. Li,et al.  Toward 3D vision from range images: An optimization framework and parallel networks , 1991, CVGIP: Image Understanding.

[27]  Sugata Ghosal,et al.  Segmentation of range images: an orthogonal moment-based integrated approach , 1993, IEEE Trans. Robotics Autom..

[28]  J. Aggarwal,et al.  Segmentation of 3D range images using pyramidal data structures , 1993 .

[29]  Anil K. Jain,et al.  Three-Dimensional Object Recognition Systems , 1993 .

[30]  Anil K. Jain,et al.  Model-based classification of quadric surfaces , 1993 .

[31]  Mubarak Shah,et al.  Analysis of shape from shading techniques , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Bruce G. Batchelor,et al.  Edge-Region-Based Segmentation of Range Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Kim L. Boyer,et al.  The Robust Sequential Estimator: A General Approach and its Application to Surface Organization in Range Data , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Adam Krzyzak,et al.  Robust Estimation for Range Image Segmentation and Reconstruction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[36]  Robert B. Fisher,et al.  Experiments in Curvature-Based Segmentation of Range Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Steven M. LaValle,et al.  A Bayesian Segmentation Methodology for Parametric Image Models , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Andrew W. Fitzgibbon,et al.  High-level model acquisition from range images , 1997, Comput. Aided Des..