Cumulative sum control charts for monitoring geometrically inflated Poisson processes: An application to infectious disease counts data

In this work, we study upper-sided cumulative sum control charts that are suitable for monitoring geometrically inflated Poisson processes. We assume that a process is properly described by a two-parameter extension of the zero-inflated Poisson distribution, which can be used for modeling count data with an excessive number of zero and non-zero values. Two different upper-sided cumulative sum-type schemes are considered, both suitable for the detection of increasing shifts in the average of the process. Aspects of their statistical design are discussed and their performance is compared under various out-of-control situations. Changes in both parameters of the process are considered. Finally, the monitoring of the monthly cases of poliomyelitis in the USA is given as an illustrative example.

[1]  Keizo Yoneda Estimations in some modified Poisson distributions. , 1962 .

[2]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[3]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[4]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[5]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[6]  Thong Ngee Goh,et al.  Spc of a near zero-defect process subject to random shocks , 1993 .

[7]  Fah Fatt Gan,et al.  An optimal design of CUSUM control charts for binomial counts , 1993 .

[8]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[9]  Pushpa L. Gupta,et al.  Analysis of zero-adjusted count data , 1996 .

[10]  Connie M. Borror,et al.  Poisson EWMA Control Charts , 1998 .

[11]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[12]  Dankmar Böhning,et al.  The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology , 1999 .

[13]  Maria Melkersson,et al.  Modeling female fertility using inflated count data models , 2000 .

[14]  James M. Lucas,et al.  Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM A Head Start , 2000, Technometrics.

[15]  Elisabeth J. Umble,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 2001, Technometrics.

[16]  John Hinde,et al.  Score tests for zero-inflated Poisson models , 2002 .

[17]  Thong Ngee Goh,et al.  Zero-inflated Poisson model in statistical process control , 2002 .

[18]  A. W. Kemp,et al.  Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .

[19]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[20]  Suk Joo Bae,et al.  Yield prediction via spatial modeling of clustered defect counts across a wafer map , 2007 .

[21]  Michael Höhle,et al.  Count data regression charts for the monitoring of surveillance time series , 2008, Comput. Stat. Data Anal..

[22]  M. H. Lim,et al.  Attribute Charts for Zero-Inflated Processes , 2008, Commun. Stat. Simul. Comput..

[23]  Nan Chen,et al.  Attribute control charts using generalized zero‐inflated Poisson distribution , 2008, Qual. Reliab. Eng. Int..

[24]  Caroline F Finch,et al.  Statistical modelling for falls count data. , 2010, Accident; analysis and prevention.

[25]  Wei Jiang,et al.  A comparison of weighted CUSUM procedures that account for monotone changes in population size , 2011, Statistics in medicine.

[26]  P. Maravelakis,et al.  A CUSUM control chart for monitoring the variance when parameters are estimated , 2011 .

[27]  Shuguang He,et al.  CUSUM charts for monitoring a zero‐inflated poisson process , 2012, Qual. Reliab. Eng. Int..

[28]  Murat Caner Testik,et al.  Detection of Abrupt Changes in Count Data Time Series: Cumulative Sum Derivations for INARCH(1) Models , 2012 .

[29]  Kwok-Leung Tsui,et al.  CUSUM Procedures for Health Care Surveillance , 2013, Qual. Reliab. Eng. Int..

[30]  Min-Hsiao Tsai,et al.  Modeling health survey data with excessive zero and K responses , 2013, Statistics in medicine.

[31]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[32]  Zhen He,et al.  A Combination of CUSUM Charts for Monitoring a Zero-Inflated Poisson Process , 2014, Commun. Stat. Simul. Comput..

[33]  Patrick Stewart,et al.  A Generalized Inflated Poisson Distribution , 2014 .

[34]  N. Pal,et al.  A Generalized Inflated Poisson Distribution with Application to Modeling Fertility Data , 2014 .

[35]  Aamir Saghir,et al.  Cumulative sum charts for monitoring the COM-Poisson processes , 2014, Comput. Ind. Eng..

[36]  Fong-Jung Yu,et al.  Run Length Distribution of CUSUM Control Schemes for Negative Binominal Processes , 2015 .

[37]  Philippe Castagliola,et al.  CUSUM Control Charts for the Monitoring of Zero‐inflated Binomial Processes , 2016, Qual. Reliab. Eng. Int..

[38]  Min-Hsiao Tsai,et al.  Model selection criteria for dual-inflated data , 2016 .

[39]  P. Maravelakis,et al.  A two-parameter general inflated Poisson distribution: Properties and applications , 2016 .

[40]  Philippe Castagliola,et al.  On the Modelling and Monitoring of General Inflated Poisson Processes , 2016, Qual. Reliab. Eng. Int..

[41]  Ram Tiwari,et al.  Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection , 2017, Statistical methods in medical research.

[42]  Airlane Pereira Alencar,et al.  CUSUM control charts to monitor series of Negative Binomial count data , 2017, Statistical methods in medical research.